摘要:
The present invention relates to a photodetector (3) comprising: a longitudinal portion (12) of a waveguide (11) which comprises or is formed by two waveguide segments (12a, 12b), which extend at least substantially parallel to one another in the longitudinal direction and are preferably distanced from one another in the transverse direction, forming a gap (14) between them; and an active element (13), which overlies the longitudinal portion (12) of the waveguide and comprises at least one material or consists of at least one material that absorbs electromagnetic radiation of at least one wavelength and generates an electric photosignal as a result of the absorption, the two waveguide segments (12a, 12b) each being in contact, at least in some portions, on at least one side, in particular on the side facing the active element (14), with a gate electrode (15a, 15b) which preferably comprises silicon or consists of silicon.
摘要:
A photosensitive device substrate including a substrate, an active device, and a photosensitive device is provided. The active device and the photosensitive device are disposed on the substrate. The active device has a semiconductor pattern and a gate electrode. The semiconductor pattern is disposed between the substrate and the gate electrode. The photosensitive device is electrically connected to the active device. The photosensitive device has a photoelectric conversion layer and a first electrode and second electrode disposed on two opposite sides of the photoelectric conversion layer. The first electrode is located between the photoelectric conversion layer and the semiconductor pattern, and the material of the first electrode includes a metal oxide.
摘要:
Embodiments of the present application provide an array substrate, a fabrication method for an array substrate, and a display panel. The array substrate includes a substrate, a gate, a gate insulating layer, a seed layer, and a semiconductor layer that are sequentially stacked. A surface of the semiconductor layer away from the seed layer has a concave-convex structure formed by growth of nanocrystalline grains, which enhances light absorption of the semiconductor layer and solves the problems of poor light sensitivity and slow response speed of semiconductor devices.
摘要:
Methods for fabricating radiation-detecting structures are presented. The methods include, for instance: fabricating a radiation-detecting structure, the fabricating including: providing a semiconductor substrate, the semiconductor substrate having a plurality of cavities extending into the semiconductor substrate from a surface thereof; and electrophoretically depositing radiation-detecting particles of a radiation-detecting material into the plurality of cavities extending into the semiconductor substrate, where the electrophoretically depositing fills the plurality of cavities with the radiation-detecting particles. In one embodiment, the providing can include electrochemically etching the semiconductor substrate to form the plurality of cavities extending into the semiconductor substrate. In addition, the providing can further include patterning the surface of the semiconductor substrate with a plurality of surface defect areas, and the electrochemically etching can include using the plurality of surface defect areas to facilitate electrochemically etching into the semiconductor substrate through the plurality of surface defect areas to form the plurality of cavities.
摘要:
A photovoltaic device, particularly a solar cell, comprises an interface between a layer of Group III-V material and a layer of Group IV material with a thin silicon diffusion barrier provided at or near the interface. The silicon barrier controls the diffusion of Group V atoms into the Group IV material, which is doped n-type thereby. The n-type doped region can provide the p-n junction of a solar cell in the Group IV material with superior solar cell properties. It can also provide a tunnel diode in contact with a p-type region of the III-V material, which tunnel diode is also useful in solar cells.
摘要:
A simple manufacturing method is provided for the fabrication of the IV-VI group of semiconductor films on inexpensive substrates for highly efficient tandem or multi junction solar cells and a variety of other electronic devices such as transistors and LEDs. Specifically, the method includes depositing a textured oxide buffer on a substrate; depositing a metal-inorganic film from a eutectic alloy on the buffer layer, the metal being a component of a IV-VI compound; and forming a layer on the metal-inorganic film on which an additional element from the IV-VI compound is added, forming a IV-VI layer on a semiconductor device. The films comprising tin sulfides—SnS (tin sulphide), SnS2, and SnS3—are grown on inexpensive substrates, such as glass or flexible plastic, at low temperature, allowing for R2R (roll-to-roll) processing.
摘要:
This invention relates to an electronic semiconductive component comprising at least one layer (2,3) of a p-type or n-type material, wherein the layer of a said p- or n-type material is constituted by a metal hydride having a chosen dopant. The invention also relates to methods for producing the component.
摘要:
The present disclosure relates to a solid-state image capturing element, a manufacturing method therefor, and an electronic device, which are capable of controlling a thickness of a depletion layer. The solid-state image capturing element includes pixels each in which a photoelectric conversion film configured to perform photoelectric conversion on incident light and a fixed charge film configured to have a predetermined fixed charge are stacked on a semiconductor substrate. The technology of the present disclosure can be applied to, for example, back surface irradiation type solid-state image capturing elements, image capturing devices such as digital still cameras or video cameras, mobile terminal devices having an image capturing function, and electronic devices using a solid-state image capturing element as an image capturing unit.
摘要:
A composite particle including a core member including a rare earth ion which shows an upconversion effect and a retaining material which retains the rare earth ion, and a semiconductor member covering a part or all of the surface of the core member, wherein the retaining material includes a semiconductor material having a band gap greater than energy difference necessary for a second step excitation in the rare earth ion to occur, or an insulating material, and the semiconductor member includes a semiconductor material having a band gap smaller than the energy difference between a first excited state and a ground state of the rare earth ion.
摘要:
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.