Abstract:
Disclosed herein are a vertical ultraviolet light emitting device including: a p-type semiconductor layer including Al; an active layer positioned on the p-type semiconductor layer and including the Al; an n-type semiconductor layer positioned on the active layer and including the Al; a metal contact layer positioned on the n-type semiconductor layer and doped with an n type; and a pad formed on the metal contact layer, wherein the metal contact layer has an Al content lower than that of the n-type semiconductor layer, and a method for manufacturing the same. According to the exemplary embodiments of the present invention, the metal contact layer is formed on the n-type semiconductor layer to allow the metal contact layer instead of the n-type semiconductor layer including AlGaN to act as the contact layer, thereby effectively improving the n type contact characteristics of the vertical ultraviolet light emitting device.
Abstract:
Disclosed herein is a UV light emitting device. The UV light emitting device includes a first conductive type semi-conductor layer, an anti-cracking layer disposed on the first conductive type semiconductor layer, an active layer disposed on the anti-cracking layer, and a second conductive type semiconductor layer disposed on the active layer, wherein the anti-cracking layer includes first lattice points and second lattice points disposed at an interface between the first conductive type semiconductor layer and the anti-cracking layer, the first lattice points are connected to lattices of the first conductive type semiconductor layer, and the second lattice points are not connected to the lattices of the first conductive type semiconductor layer.
Abstract:
Disclosed herein is a UV light emitting device. The UV light emitting device includes a first conductive type semi-conductor layer, an anti-cracking layer disposed on the first conductive type semiconductor layer, an active layer disposed on the anti-cracking layer, and a second conductive type semiconductor layer disposed on the active layer, wherein the anti-cracking layer includes first lattice points and second lattice points disposed at an interface between the first conductive type semiconductor layer and the anti-cracking layer, the first lattice points are connected to lattices of the first conductive type semiconductor layer, and the second lattice points are not connected to the lattices of the first conductive type semiconductor layer.