摘要:
A compound containing a crosslinkable moiety, a curable prepolymer, a blend, and a polymer sheet obtained therefrom, and an optical waveguide for optical interconnection. The compound is represented by the formula below: Ar—H wherein Ar includes a crosslinkable moiety at one end, a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and one or two repeating units selected from the group consisting of the following repeating units: wherein A in the repeating unit is carbon or nitrogen, and X is hydrogen or halogen. At least one of the core and the cladding in the optical waveguide includes the polymer sheet.
摘要:
A prepolymer prepared by condensation reaction between a first compound represented by Formula (1) below: Ar—H (1), where Ar is composed of a crosslinkable moiety at one end, a moiety selected from the group —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and one or two repeating units selected from the group: where A is carbon or nitrogen, and X is hydrogen or halogen; and a second compound that is an aromatic moiety.
摘要:
Provided are a flexible waveguide structure and an optical interconnection assembly. The flexible waveguide structure includes a thin film strip core, an inner cladding layer, and an outer cladding layer. The thin film strip core has opposed first and second surfaces and is formed of a metal. The inner cladding layer covers at least one of the first and second surfaces of the thin film strip core. The outer cladding layer covers the inner cladding layer. The inner cladding layer has a refractive index higher than that of the outer cladding layer.
摘要:
Provided are a light emitting device and an optical coupling module. The device includes a substrate, a light emitting part provided to the substrate, and a reflecting part provided to a lower surface of the substrate. The light emitting part includes an active pattern disposed on the substrate, an upper mirror provided to an upper portion of the active pattern, and a lower mirror provided to a lower portion of the active pattern. The light emitting part may emit light normal to the substrate, and the reflecting part may reflect the emitted light to a side surface of the substrate.
摘要:
Provided are a light emitting device and an optical coupling module. The device includes a substrate, a light emitting part provided to the substrate, and a reflecting part provided to a lower surface of the substrate. The light emitting part includes an active pattern disposed on the substrate, an upper mirror provided to an upper portion of the active pattern, and a lower mirror provided to a lower portion of the active pattern. The light emitting part may emit light normal to the substrate, and the reflecting part may reflect the emitted light to a side surface of the substrate.
摘要:
An exemplary embodiment of the present disclosure provides an optical module including: an optical hybrid including a metal optical waveguide; a photo detector configured to receive light; and a platform including an optical hybrid supporting section for supporting the optical hybrid, a photo detector supporting section for supporting the photo detector, and an inclined surface configured to change a propagation direction of light emitted from the optical hybrid, and configured to combine the optical hybrid and the photo detector.
摘要:
The present disclosure relates to a planar optical waveguide element, and more particularly, to an optical waveguide end structure for effective optical signal connection with a light source, a light receiving element, or a different type of optical waveguide element.According to an exemplary embodiment of the present disclosure, there is disclosed an optical waveguide structure, including: a planar optical waveguide including a lower clad, a waveguide core formed on the lower clad, and a clad layer formed on the waveguide core; and an optical lens formed on a surface of the clad layer.One end of the optical waveguide forms an inclined surface having a predetermined inclination angle.
摘要:
Provided is an optical OFDM receiver. The optical OFDM receiver receives an optical signal dependent on the nonlinearity of a transmitter. The optical OFDM receives includes an optical down converter, a nonlinearity compensator, and an OFDM demodulator. The optical down converter converts the optical signal into an electrical signal. The nonlinearity compensator filters the electrical signal, for compensating distortion which is added to the optical signal when the transmitter performs optical modulation. The OFDM demodulator demodulates the distortion-compensated electrical signal in an OFDM scheme.
摘要:
Provided is a polarization division multiplexed optical OFDM transmitter. The polarization division multiplexed optical OFDM transmitter includes a data demultiplexer, a training symbol generation unit and an optical up-converter and polarization division multiplexing unit. The data demultiplexer divides a transmission signal into a plurality of groups. The training symbol generation unit allocates a plurality of training symbols for each OFDM data which is included in the respective multiplexed groups, and allocates repetitive data in a time domain for the respective training symbols for data of 0 to periodically appear for the respective training symbols in a frequency domain. The optical up-converter and polarization division multiplexing unit performs optical frequency band conversion and polarization division multiplexing on an output of the training symbol generation unit to output a polarization division multiplexed optical OFDM signal corresponding to a plurality of polarization components.
摘要:
Disclosed are a method and an apparatus for transmitting and receiving coherent optical OFDM. The apparatus includes: a transmitted OFDM digital signal processing unit outputting an in-phase (I) component digital signal and a quadrature phase (Q) component digital signal; a digital-analog converter converting the in-phase (I)-component digital signal and the quadrature-phase (Q)-component digital signal into an in-phase (I)-component analog signal and a quadrature-phase (Q)-component analog signal, respectively; an adder adding an additional pilot tone signal to each of the in-phase (I)-component analog signal and the quadrature-phase (Q)-component analog signal outputted from the digital-analog converter; and an optical I/Q modulator up-converting the in-phase (I)-component analog signal added with the additional pilot tone signal and the quadrature-phase (Q)-component analog signal added with the additional pilot tone signal to an optical domain to output a coherent optical OFDM signal including the additional pilot tone signal.