摘要:
The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.
摘要:
The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.
摘要:
The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure having dominant lateral vibrations supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer that has been grown with a specific crystal orientation. Since the MEMS vibrating structure has dominant lateral vibrations, its resonant frequency may be controlled by its size and shape, rather than layer thickness, which provides high accuracy and enables multiple resonators having different resonant frequencies on a single substrate.
摘要:
A method of forming a device is provided. The method includes providing a substrate, forming a sacrificial layer over the substrate, and forming a field layer around the sacrificial layer. After formation, both the sacrificial layer and the field layer are planarized. A component is then formed over the planarized sacrificial layer and the planarized field layer. The component has a first electrode and a second electrode and a single crystal wafer disposed between the first and second electrodes. The component includes anchors disposed substantially over the field layer. Once the component is formed, the sacrificial layer is released with an etchant having a selectivity for the sacrificial layer wherein a cavity is formed beneath the component. The cavity allows free movement within the cavity during operation of the device. The etchant does not release the field layer and the component so the field layer remains below the anchors.
摘要:
A method of forming a device is provided. The method includes providing a substrate, forming a sacrificial layer over the substrate, and forming an field layer around the sacrificial layer. After formation, both the sacrificial layer and the field layer are planarized. A component is then formed over the planarized sacrificial layer and the planarized field layer. The component has a first electrode and a second electrode and a single crystal wafer disposed between the first electrode and the second electrode. The component also includes anchors disposed substantially over the field layer. Once the component is formed, the sacrificial layer is released with an etchant having a selectivity for the sacrificial layer such that a cavity is formed beneath the component. The cavity allows free movement component within the cavity during operation of the device. In addition, the etchant does not release the field layer and the component such that the field layer remains below the anchors.
摘要:
A method for making a micro-electro-mechanical systems (MEMS) vibrating structure is disclosed. The MEMS is supported by a MEMS anchor system and includes a single-crystal piezoelectric thin-film layer that has a specific non-standard crystal orientation, which may be selected to increase an electromechanical coupling coefficient, decrease a temperature coefficient of frequency, or both. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.
摘要:
The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.
摘要:
The present invention relates to a multi-mode micro-electromechanicalsystems (MEMS) resonator system that may provide low motional resistance and a high quality factor by using a resonating structure that includes multiple parallel-coupled longitudinally resonating bodies, each of which has multiple resonating segments adjacent to one another along an axis. The multi-mode MEMS resonator system may provide high acoustic velocity by using the micro-structure of MEMS technology. The multi-mode MEMS resonator system may include electrostatic transducers, piezoelectric transducers, or both. The present invention includes multiple embodiments that may include different configurations of the resonating structure.
摘要:
Provided is a substrate supporting unit, which includes a support plate on which a substrate is placed, and a heating member disposed within the support plate to heat the support plate. The heating member includes a plurality of first heating wires disposed in a first region of the support plate, and a plurality of second heating wires disposed in a second region of the support plate, which is different from the first region. The first heating wires are connected to each other through one of a series connection and a parallel connection, and the second heating wires are connected to each other through the other of the series connection and the parallel connection.
摘要:
A structure of a ventilation fan provided with a plurality of blades has a performance curve characterized by a gentle slope throughout the wide operating range instead of an S-hysteresis curve, in order to overcome a fluctuation phenomena of the operating flow rate. The blade tip cross-section lies on a first imaginary cylindrical surface and an angle of attack and pitch angle of the blade tip are formed as respective trajections by intersecting the first cylindrical surface by a second cylindrical surface whose center axis has been rotated about two axes.