PLANARIZED SACRIFICIAL LAYER FOR MEMS FABRICATION
    1.
    发明申请
    PLANARIZED SACRIFICIAL LAYER FOR MEMS FABRICATION 审中-公开
    用于MEMS制造的平面非常薄层

    公开(公告)号:US20130020279A1

    公开(公告)日:2013-01-24

    申请号:US13598962

    申请日:2012-08-30

    IPC分类号: B05D5/12 H01L41/22 B05D3/10

    CPC分类号: B81C1/00476 Y10T29/42

    摘要: A method of forming a device is provided. The method includes providing a substrate, forming a sacrificial layer over the substrate, and forming a field layer around the sacrificial layer. After formation, both the sacrificial layer and the field layer are planarized. A component is then formed over the planarized sacrificial layer and the planarized field layer. The component has a first electrode and a second electrode and a single crystal wafer disposed between the first and second electrodes. The component includes anchors disposed substantially over the field layer. Once the component is formed, the sacrificial layer is released with an etchant having a selectivity for the sacrificial layer wherein a cavity is formed beneath the component. The cavity allows free movement within the cavity during operation of the device. The etchant does not release the field layer and the component so the field layer remains below the anchors.

    摘要翻译: 提供了一种形成装置的方法。 该方法包括提供衬底,在衬底上形成牺牲层,以及在牺牲层周围形成场层。 在形成之后,牺牲层和场层都被平坦化。 然后在平坦化的牺牲层和平坦化的场层上形成一个分量。 该部件具有设置在第一和第二电极之间的第一电极和第二电极以及单晶晶片。 该部件包括基本上设置在场层上的锚。 一旦形成了部件,牺牲层就可以用对牺牲层具有选择性的蚀刻剂来释放,其中在部件之下形成空腔。 空腔允许在设备操作期间在空腔内自由移动。 蚀刻剂不释放场层和组分,因此场层保持在锚点下方。

    Planarized sacrificial layer for MEMS fabrication
    2.
    发明授权
    Planarized sacrificial layer for MEMS fabrication 有权
    MEMS制造的平面牺牲层

    公开(公告)号:US08278802B1

    公开(公告)日:2012-10-02

    申请号:US12429455

    申请日:2009-04-24

    IPC分类号: H01L21/00

    CPC分类号: B81C1/00476 Y10T29/42

    摘要: A method of forming a device is provided. The method includes providing a substrate, forming a sacrificial layer over the substrate, and forming an field layer around the sacrificial layer. After formation, both the sacrificial layer and the field layer are planarized. A component is then formed over the planarized sacrificial layer and the planarized field layer. The component has a first electrode and a second electrode and a single crystal wafer disposed between the first electrode and the second electrode. The component also includes anchors disposed substantially over the field layer. Once the component is formed, the sacrificial layer is released with an etchant having a selectivity for the sacrificial layer such that a cavity is formed beneath the component. The cavity allows free movement component within the cavity during operation of the device. In addition, the etchant does not release the field layer and the component such that the field layer remains below the anchors.

    摘要翻译: 提供了一种形成装置的方法。 该方法包括提供衬底,在衬底上形成牺牲层,以及在牺牲层周围形成场层。 在形成之后,牺牲层和场层都被平坦化。 然后在平坦化的牺牲层和平坦化的场层上形成一个分量。 该部件具有设置在第一电极和第二电极之间的第一电极和第二电极以及单晶晶片。 该部件还包括基本上设置在场层上的锚。 一旦形成了部件,牺牲层就被用于对牺牲层具有选择性的蚀刻剂释放,使得在部件之下形成空腔。 空腔在设备运行期间允许空腔内的自由运动部件。 此外,蚀刻剂不会释放场层和组件,使得场层保持在锚点下方。

    MEMS vibrating structure using a single-crystal piezoelectric thin-film layer having domain inversions
    3.
    发明授权
    MEMS vibrating structure using a single-crystal piezoelectric thin-film layer having domain inversions 有权
    使用具有畴倒置的单晶压电薄膜层的MEMS振动结构

    公开(公告)号:US08035280B2

    公开(公告)日:2011-10-11

    申请号:US13037584

    申请日:2011-03-01

    IPC分类号: H01L41/08

    摘要: The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.

    摘要翻译: 微机电系统技术领域本发明涉及由MEMS锚定系统支撑的微电子机械系统(MEMS)振动结构,并且包括确定MEMS振动结构的某些振动特性的具有畴反转的单晶压电薄膜层。 MEMS振动结构可能具有主要的横向振动或主要厚度振动。 单晶压电薄膜层可以包括钽酸锂或铌酸锂,并且可以提供具有精确尺寸和形状的MEMS振动结构,其可以提供高精度并且能够在单个衬底上制造具有不同谐振频率的多个谐振器。

    MEMS VIBRATING STRUCTURE USING A SINGLE-CRYSTAL PIEZOELECTRIC THIN-FILM LAYER HAVING DOMAIN INVERSIONS
    4.
    发明申请
    MEMS VIBRATING STRUCTURE USING A SINGLE-CRYSTAL PIEZOELECTRIC THIN-FILM LAYER HAVING DOMAIN INVERSIONS 有权
    使用具有域反转的单晶压电薄膜层的MEMS振动结构

    公开(公告)号:US20110148252A1

    公开(公告)日:2011-06-23

    申请号:US13037584

    申请日:2011-03-01

    IPC分类号: H01L41/04

    摘要: The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer having domain inversions, which determine certain vibrational characteristics of the MEMS vibrating structure. The MEMS vibrating structure may have dominant lateral vibrations or dominant thickness vibrations. The single-crystal piezoelectric thin-film layer may include Lithium Tantalate or Lithium Niobate, and may provide MEMS vibrating structures with precise sizes and shapes, which may provide high accuracy and enable fabrication of multiple resonators having different resonant frequencies on a single substrate.

    摘要翻译: 微机电系统技术领域本发明涉及由MEMS锚定系统支撑的微电子机械系统(MEMS)振动结构,并且包括确定MEMS振动结构的某些振动特性的具有畴反转的单晶压电薄膜层。 MEMS振动结构可能具有主要的横向振动或主要厚度振动。 单晶压电薄膜层可以包括钽酸锂或铌酸锂,并且可以提供具有精确尺寸和形状的MEMS振动结构,其可以提供高精度并且能够在单个衬底上制造具有不同谐振频率的多个谐振器。

    MEMS vibrating structure using a single-crystal piezoelectric thin film layer
    5.
    发明授权
    MEMS vibrating structure using a single-crystal piezoelectric thin film layer 有权
    MEMS振动结构采用单晶压电薄膜层

    公开(公告)号:US07586239B1

    公开(公告)日:2009-09-08

    申请号:US12134483

    申请日:2008-06-06

    IPC分类号: H01L41/08

    摘要: The present invention relates to a micro-electro-mechanical systems (MEMS) vibrating structure having dominant lateral vibrations supported by a MEMS anchor system, and includes a single-crystal piezoelectric thin-film layer that has been grown with a specific crystal orientation. Since the MEMS vibrating structure has dominant lateral vibrations, its resonant frequency may be controlled by its size and shape, rather than layer thickness, which provides high accuracy and enables multiple resonators having different resonant frequencies on a single substrate.

    摘要翻译: 微机电系统(MEMS)振动结构技术领域本发明涉及由MEMS锚系统支撑的主要侧向振动的微电子机械系统(MEMS)振动结构,并且包括已经以特定的晶体取向生长的单晶压电薄膜层。 由于MEMS振动结构具有主要的横向振动,其谐振频率可以通过其尺寸和形状而不是层厚度来控制,其提供高精度并且使得在单个基板上具有不同谐振频率的多个谐振器。

    Micromechanical resonator oscillator structure and driving method thereof
    8.
    发明授权
    Micromechanical resonator oscillator structure and driving method thereof 有权
    微机械谐振器结构及其驱动方法

    公开(公告)号:US09024708B2

    公开(公告)日:2015-05-05

    申请号:US13615609

    申请日:2012-09-14

    摘要: This invention provides a micromechanical resonator oscillator structure and a driving method thereof. As power handling ability of a resonator is proportional to its equivalent stiffness, a better power handling capability is obtained by driving a micromechanical resonator oscillator at its high equivalent stiffness area. One of the embodiments of this invention is demonstrated by using a beam resonator. A 9.7-MHZ beam resonator via the high-equivalent stiffness area driven method shows better power handling capability and having lower phase noise.

    摘要翻译: 本发明提供一种微机械谐振器结构及其驱动方法。 由于谐振器的功率处理能力与其等效刚度成比例,通过在其高等效刚度区域驱动微机械谐振器振荡器可以获得更好的功率处理能力。 通过使用光束谐振器来证明本发明的一个实施例。 通过高等效刚度区域驱动的方法,9.7-MHZ光束谐振器显示出更好的功率处理能力并具有较低的相位噪声。

    Micromechanical structures having a capacitive transducer gap filled with a dielectric and method of making same
    9.
    发明授权
    Micromechanical structures having a capacitive transducer gap filled with a dielectric and method of making same 失效
    具有填充有电介质的电容式换能器间隙的微机械结构及其制造方法

    公开(公告)号:US07551043B2

    公开(公告)日:2009-06-23

    申请号:US11511202

    申请日:2006-08-28

    摘要: Micromechanical structures having at least one lateral capacitive transducer gap filled with a dielectric and method of making same are provided. VHF and UHF MEMS-based vibrating micromechanical resonators filled with new solid dielectric capacitive transducer gaps to replace previously used air gaps have been demonstrated at 160 MHz, with Q's˜20,200 on par with those of air-gap resonators, and motional resistances (Rx's) more than 8× smaller at similar frequencies and bias conditions. This degree of motional resistance reduction comes about via not only the higher dielectric constant provided by a solid-filled electrode-to-resonator gap, but also by the ability to achieve smaller solid gaps than air gaps. These advantages with the right dielectric material may now allow capacitively-transduced resonators to match to the 50-377Ω impedances expected by off-chip components (e.g., antennas) in many wireless applications without the need for high voltages.

    摘要翻译: 提供了具有填充有电介质的至少一个侧向电容性换能器间隙的微机械结构及其制造方法。 充满新固体电介质电容换能器间隙的VHF和UHF MEMS振动微机械谐振器已经在160 MHz下得到了证实,Q-20,200与气隙谐振器相当,运动电阻(Rx) 在相似的频率和偏置条件下,小于8倍。 这种运动阻力降低的程度不仅通过固体填充的电极与谐振器间隙提供的较高的介电常数,而且通过与气隙实现更小的固体间隙的能力。 使用正确的介电材料的这些优点现在可以允许电容转换的谐振器与许多无线应用中的片外组件(例如,天线)预期的50-377Omega阻抗匹配,而不需要高电压。

    MEMS resonator, manufacturing method thereof, and signal processing method using MEMS resonator
    10.
    发明授权
    MEMS resonator, manufacturing method thereof, and signal processing method using MEMS resonator 有权
    MEMS谐振器,其制造方法和使用MEMS谐振器的信号处理方法

    公开(公告)号:US08854149B2

    公开(公告)日:2014-10-07

    申请号:US13615656

    申请日:2012-09-14

    IPC分类号: H03B5/30 H03H9/05 H03H9/24

    摘要: A capacitively-driven Micro-Electro-Mechanical System (MEMS) resonator is provided, in which a piezoresistively differential measurement is used to enable the MEMS resonator to transfer a signal. The MEMS resonator uses a Complementary Metal-Oxide-Semiconductor (CMOS) manufacturing process to make its oscillator and piezoresistor to achieve electrical insulation, thereby lowering the level of feedthrough signal.

    摘要翻译: 提供了一种电容驱动的微机电系统(MEMS)谐振器,其中使用压阻差分测量来使MEMS谐振器传输信号。 MEMS谐振器采用互补金属氧化物半导体(CMOS)制造工艺,使其振荡器和压敏电阻实现电绝缘,从而降低馈通信号的电平。