摘要:
A method is provided for forming a buffered-layer memory cell. The method comprises: forming a bottom electrode; forming a colossal magnetoresistance (CMR) memory film overlying the bottom electrode; forming a memory-stable semiconductor buffer layer, typically a metal oxide, overlying the memory film; and, forming a top electrode overlying the semiconductor buffer layer. In some aspects of the method the semiconductor buffer layer is formed from YBa2Cu3O7−X (YBCO), indium oxide (In2O3), or ruthenium oxide (RuO2), having a thickness in the range of 10 to 200 nanometers (nm). The top and bottom electrodes may be TiN/Ti, Pt/TiN/Ti, In/TiN/Ti, PtRhOx compounds, or PtIrOx compounds. The CMR memory film may be a Pr1−XCaXMnO3 (PCMO) memory film, where x is in the region between 0.1 and 0.6, with a thickness in the range of 10 to 200 nm.
摘要翻译:提供了一种用于形成缓冲层存储单元的方法。 该方法包括:形成底部电极; 形成覆盖底部电极的巨大磁阻(CMR)记忆膜; 形成存储器稳定的半导体缓冲层,通常为覆盖存储膜的金属氧化物; 并且形成覆盖半导体缓冲层的顶部电极。 在该方法的一些方面,半导体缓冲层由YBa 2 N 3 O 7-X(YBCO),氧化铟(In 2或2 O 3)或氧化钌(RuO 2 N 2),其厚度在10-200纳米(nm)的范围内。 顶部和底部电极可以是TiN / Ti,Pt / TiN / Ti,In / TiN / Ti,PtRhOx化合物或PtIrOx化合物。 CMR存储器膜可以是Pr 1-X C x MnO 3(PCMO)存储膜,其中x在0.1之间的区域 和0.6,厚度在10至200nm的范围内。
摘要:
An electrode for use in a ferroelectric device includes a bottom electrode; a ferroelectric layer; and a top electrode formed on the ferroelectric layer and formed of a combination of metals, including a first metal take from the group of metals consisting of platinum and iridium, and a second metal taken from the group of metals consisting of aluminum and titanium; wherein the top electrode acts as a passivation layer and wherein the top electrode remains conductive following high temperature annealing in a hydrogen atmosphere. A method of forming a hydrogen-resistant electrode in a ferroelectric device includes forming a bottom electrode; forming a ferroelectric layer on the bottom electrode; depositing a top electrode on the ferroelectric layer; including depositing, simultaneously, a first metal taken from the group of metals consisting of platinum and iridium; and a second metal taken from the group of metals consisting of aluminum and titanium; and forming a passivation layer by annealing the structure in an oxygen atmosphere to form an oxide passivation layer on the top electrode.
摘要:
A Pb3GeO5 phase PGO thin film is provided. This film has ferroelastic properties that make it ideal for many microelectromechanical applications or as decoupling capacitors in high speed multichip modules. This PGO film is uniquely formed in a MOCVD process that permits a thin film, less than 1 mm, of material to be deposited. The process mixes Pd and germanium in a solvent. The solution is heated to form a precursor vapor which is decomposed. The method provides deposition temperatures and pressures. The as-deposited film is also annealed to enhanced the film's ferroelastic characteristics. A ferroelastic capacitor made from the present invention PGO film is also provided.
摘要:
An MFIS memory array having a plurality of MFIS memory transistors with a word line connecting a plurality of MFIS memory transistor gates, wherein all MFIS memory transistors connected to a common word line have a common source, each transistor drain serves as a bit output, and all MFIS channels along a word line are separated by a P+ region and are further joined to a P+ substrate region on an SOI substrate by a P+ region is provided. Also provided are methods of making an MFIS memory array on an SOI substrate; methods of performing a block erase of one or more word lines, and methods of selectively programming a bit.
摘要:
A ferroelectric thin film resistor memory array is formed on a substrate and includes plural memory cells arranged in an array of rows and columns; wherein each memory cell includes: a FE resistor having a pair of terminals, and a transistor associated with each resistor, wherein each transistor has a gate, a drain and a source, and wherein the drain of each transistor is electrically connected to one terminal of its associated resistor; a word line connected to the gate of each transistor in a row; a programming line connected to each memory cell in a column; and a bit line connected to each memory cell in a column.
摘要:
The ferroelectric structure including a Pt/Ir layered electrode used in conjunction with a lead germanate (Pb5Ge3O11) thin film is provided. The electrode exhibits good adhesion to the substrate, and barrier properties resistant to oxygen and lead. Ferroelectric properties are improved, without detriment to the leakage current, by using a thin IrO2 layer formed in situ, during the MOCVD lead germanate (Pb5Ge3O11) thin film process. By using a Pt/Ir electrode, a relatively low MOCVD processing temperature is required to achieve c-axis oriented lead germanate (Pb5Ge3O11) thin film. The temperature range of MOCVD c-axis oriented lead germanate (Pb5Ge3O11) thin film on top of Pt/Ir is 400-500° C. Further, a relatively large nucleation density is obtained, as compared to using single-layer iridium electrode. Therefore, the lead germanate (Pb5Ge3O11) thin film has a smooth surface, a homogeneous microstructure, and homogeneous ferroelectric properties. A method of forming the above-mentioned multi-layered electrode ferroelectric structure is also provided.
摘要:
A ferroelectric transistor gate structure with a ferroelectric gate and passivation sidewalls is provided. The passivation sidewalls serve as an insulator to reduce, or eliminate, the diffusion of oxygen or hydrogen into the ferroelectric gate. A method of forming the ferroelectric gate structure is also provided. The method comprises the steps of forming a sacrificial gate structure, removing the sacrificial gate structure, depositing passivation insulator material, etching the passivation insulator material using anisotropic plasma etching to form passivation sidewalls, depositing a ferroelectric material, polishing the ferroelectric material using CMP, and forming a top electrode overlying the ferroelectric material.
摘要:
A Pb3GeO5 phase PGO thin film is provided. This film has ferroelastic properties that make it ideal for many microelectromechanical applications or as decoupling capacitors in high speed multichip modules. This PGO film is uniquely formed in a MOCVD process that permits a thin film, less than 1 mm, of material to be deposited. The process mixes Pd and germanium in a solvent. The solution is heated to form a precursor vapor which is decomposed. The method provides deposition temperatures and pressures. The as-deposited film is also annealed to enhanced the film's ferroelastic characteristics. A ferroelastic capacitor made from the present invention PGO film is also provided.
摘要:
The present invention provides a substantially single crystal PGO film with optimal the ferroelectric properties. The PGO film and adjacent electrodes are epitaxially grown to minimize mismatch between the structures. MOCVD deposition methods and RTP annealing procedures permit a PGO film to be epitaxially grown in commercial fabrication processes. These epitaxial ferroelectric have application in FeRAM memory devices. The present invention deposition method epitaxially grows ferroelectric Pb5Ge3O11 thin films along with c-axis orientation.
摘要:
A method is provided for forming a Pr0.3Ca0.7MnO3 (PCMO) thin film with crystalline structure-related memory resistance properties. The method comprises: forming a PCMO thin film with a first crystalline structure; and, changing the resistance state of the PCMO film using pulse polarities responsive to the first crystalline structure. In one aspect the first crystalline structure is either amorphous or a weak-crystalline. Then, the resistance state of the PCMO film is changed in response to unipolar pulses. In another aspect, the PCMO thin film has either a polycrystalline structure. Then, the resistance state of the PCMO film changes in response to bipolar pulses.