摘要:
A wide bandgap semiconductor single crystal is applied as a semiconductor substrate material of a semiconductor surge absorber, and a surge absorption operation starting voltage is set by a punchthrough of a pn junction, to obtain a semiconductor surge absorber with a repetitive operation and a high surge endurance.
摘要:
A power converting apparatus comprising a group of semiconductor switches and DC terminals electrically connected to the group of semiconductor switches, in which a clamping circuit is connected to the semiconductor switches or the DC terminals. Otherwise, a diode having a wide band gap is connected in parallel with a snubber diode or a snubber capacitor of a snubber circuit connected in parallel with the semiconductor switches. With such arrangement, an overvoltage or oscillating voltage impressed on the semiconductor switches is suppressed.
摘要:
In a silicon carbide static induction transistor, at a surface part of a semiconductor substrate, a p-type gate region is formed partially overlapping a n-type source region, whereby the high accuracy in alignment between the gate region and the source region is not required, and the gate withstand voltage can be highly increased since the substrate is made of silicon carbide, which improves the yield of static induction transistors.
摘要:
A static induction transistor includes a semiconductor substrate with an energy band gap greater than that of silicon, and the semiconductor substrate has a first gate region to which a gate electrode is connected; and a second gate region positioned within a first semiconductor region which becomes a drain region, and the first gate region is in contact with a second semiconductor region which becomes a source region. According to this construction, the OFF characteristics of the static induction transistor are improved.
摘要:
The present semiconductor switching device comprises a silicon carbide single crystal of hexagonal symmetry having a first conductive type and a semiconductor region of a second conductive type opposite to the first conductive type and locating in the silicon carbide single crystal. The silicon carbide single crystal of the first conductive type and the semiconductor region of the seconductive type form a pn junction. The pn junction interface has an interface extended in the depth direction from the surface of the silicon carbide single crystal, and the interface includes a crystal plane in parallel to the orientation of the silicon carbide single crystal or approximately in parallel thereto, thereby reducing the leak current.
摘要:
A gate turn-off thyristor and a transistor are disclosed, each of which comprises: a semiconductor substrate including at least three semiconductor layers between a pair of principal surfaces, adjacent ones of the semiconductor layers being different in conductivity type from each other, a first one of the semiconductor layers being formed of at least one strip-shaped region with a constant width, a second one of the semiconductor layers being exposed to a first principal surface of the semiconductor substrate together with the strip-shaped region; a first main electrode kept in ohmic contact with the strip-shaped region at the first principal surface; a first control electrode kept in ohmic contact with the second semiconductor layer on one side of the strip-shaped region in the direction of the width thereof and connected directly to a control terminal; a second control electrode kept in ohmic contact with the second semiconductor layer on the other side of the strip-shaped region in the direction of the width thereof and connected to the control terminal through the first control electrode and the resistance of the second semiconductor layer between the first control electrode and the second control electrode; a second main electrode kept in ohmic contact with a second principal surface of the semiconductor substrate; and means provided in the semiconductor substrate for accelerating the spatial biasing of a conductive region to the other side of the strip-shaped region in the direction of the width thereof when a current flowing across the semiconductor substrate is cut off, thereby enlarging the area of safety operation.
摘要:
A semiconductor device such as a transistor or gate turn-off thyristor provided with a control electrode for improving the current cut-off performance, is disclosed in which an emitter layer of a semiconductor substrate is formed of a plurality of strip-shaped regions, a base layer adjacent to the strip-shaped regions is exposed to one principal surface of the semiconductor substrate together with the strip-shaped regions, one main electrode is provided on each strip-shaped region, first and second control electrodes are provided on the base layer, on one and the other sides of each strip-shaped region viewed in the direction of the width thereof, respectively, the other main electrode is provided on the second principal surface of the semiconductor substrate, and a gate terminal is not connected to the first control electrode but connected to the second control electrode, in order to draw out carriers unequally by the first and second control electrodes at a turn-off period. At the initial stage of turn-off action, carriers are drawn out mainly by the second control terminal, and a conductive region contracts so as to be limited to the first control electrode side. At the final stage of turn-off action, carriers are drawn out considerably by the first control electrode, to complete the turn-off action.
摘要:
This invention has a cell incorporating a built-in Schottky diode region disposed in at least part of an elementary cell that constitutes an SiC vertical MOSFET provided in a low-density p-type deposit film with a channel region and a base region inverted to an n-type by ion implantation. This built-in Schottky diode region has built therein a Schottky diode of low on-resistance that is formed of a second deficient pan disposed in a high-density gate layer, a second n-type base layer penetrating a low-density p-type deposit layer formed thereon, reaching an n-type drift layer of the second deficient part and attaining its own formation in consequence of inversion of the p-type deposit layer into an n-type by the ion implantation of an n-type impurity from the surface, and a source electrode connected in the manner of forming a Schottky barrier to the surface-exposed part of the second n-type base layer.
摘要:
The object is to provide a method for the fabrication of a semiconductor device having undergone an anneal treatment for the purpose of forming such ohmic contact as enables decrease of ohmic contact resistance and being provided on the (000-1) plane of silicon carbide with an insulating film and provide the semiconductor device. The method for the fabrication of a silicon carbide semiconductor device includes the steps of performing thermal oxidation on the (000-1) plane of a silicon carbide semiconductor in a gas containing at least oxygen and moisture, thereby forming an insulating film in such a manner as to contact the (000-1) plane of the silicon carbide semiconductor, removing part of the insulating film, thereby forming an opening part therein, depositing contact metal on at least part of the opening part, and performing a heat treatment, thereby forming a reaction layer of the contact metal and silicon carbide, wherein the heat treatment is implemented in a mixed gas of an inert gas and hydrogen.
摘要:
A semiconductor device and a method of manufacturing the device using a (000-1)-faced silicon carbide substrate are provided. A SiC semiconductor device having a high blocking voltage and high channel mobility is manufactured by optimizing the heat-treatment method used following the gate oxidation. The method of manufacturing a semiconductor device includes the steps of forming a gate insulation layer on a semiconductor region formed of silicon carbide having a (000-1) face orientation, forming a gate electrode on the gate insulation layer, forming an electrode on the semiconductor region, cleaning the semiconductor region surface. The gate insulation layer is formed in an atmosphere containing 1% or more H2O (water) vapor at a temperature of from 800° C. to 1150° C. to reduce the interface trap density of the interface between the gate insulation layer and the semiconductor region.