摘要:
An apparatus for processing an organohalogen compounds includes a catalyst container containing a catalyst layer, a supplying path for supplying a carrier gas containing organohalogen compounds and steam through the catalyst container, a cooling chamber arranged at a lower portion of the catalyst container, a spraying apparatus mounted in the cooling chamber for spraying a cooling liquid to cool exhaust gas containing a decomposed gas of the organohalogen compounds exhausted from the catalyst layer and a baffle member forming a bent path which introduces the exhaust gas containing the decomposed gas into the cooling chamber from the catalyst layer and mounted in the cooling chamber for preventing mists generated by spraying cooling liquid from the spraying apparatus from back flowing into the catalyst container.
摘要:
A process is provided for the destruction of organohalogen compounds, such as methyl chloride, chloroform, carbon tetrachloride, etc., by mixing the organohalogen compounds with a heated carrier gas, such as nitrogen, argon or air, and either steam or water to form a mixture; supplying the mixture to a catalyst, such as titanium oxide/tungsten oxide, to decompose the organohalogen compounds into halogens and hydrogen halides, such as chlorine, hydrochloric acid, fluorine and hydrofluoric acid; conducting the halogen and hydrogen halide contaminated gas through a bent path, created by a baffle that prevents the entry of mist or droplets into the catalyst chamber, into a cooling section where the halogen and hydrogen halide contaminated gas is sprayed with water to cool the gas to a temperature low enough to prevent the formation of dioxines. An alkaline agent, such as sodium hydroxide, can be added to the cooling water to neutralize the halides and hydrogen halides.
摘要:
An exhaust gas containing a perfluoride compound (PFC) and SiF4 is conducted into a silicon remover and brought into contact with water. A reaction water supplied from a water supplying piping and air supplied from an air supplying piping are mixed with the exhaust gas exhausted from the silicon remover. The exhaust gas containing water, air, and CF4 is heated at 700° C. by a heater. The exhaust gas containing PFC is conducted to a catalyst layer filled with an alumina group catalyst. The PFC is decomposed to HF and CO2 by the catalyst. The exhaust gas containing HF and CO2 at a high temperature exhausted from the catalyst layer is cooled in a cooling apparatus. Subsequently, the exhaust gas is conducted to an acidic gas removing apparatus to remove HF. In this way, the silicon component is removed from the exhaust gas before introducing the exhaust gas into the catalyst layer. Therefore, the surface of the catalyst can be utilized effectively, and the decomposition reaction of the perfluoride compound can be improved.
摘要:
An exhaust gas containing a perfluoride component (PFC) and SiIF4 is conducted into a silicon remover and brought into contact with water. A reaction water supplied from a water supplying piping and air supplied from an air supplying piping are mixed with the exhaust gas exhausted from the silicon remover. The exhaust gas containing water, air, and CF4 is heated at 700° C. by a heater. The exhaust gas containing PFC is conducted to a catalyst layer filled with an alumina group catalyst. The PFC is decomposed to HF and CO2 at a high temperature exhausted from the catalyst layer is cooled in a cooling apparatus. Subsequently, the exhaust gas is conducted to an acidic gas removing apparatus to remove HF. In this way, the silicon component is removed from the exhaust gas before introducing the exhaust gas into the catalyst layer. Therefore, the surface of the catalyst can be utilized effectively, and the decomposition reaction of the perfluoride compound can be improved.
摘要:
An exhaust gas containing a perfluoride component (PFC) and SiIF4 is conducted into a silicon remover and brought into contact with water. A reaction water supplied from a water supplying piping and air supplied from an air supplying piping are mixed with the exhaust gas exhausted from the silicon remover. The exhaust gas containing water, air, and CF4 is heated at 700° C. by a heater. The exhaust gas containing PFC is conducted to a catalyst layer filled with an alumina group catalyst. The PFC is decomposed to HF and CO2 at a high temperature exhausted from the catalyst layer is cooled in a cooling apparatus. Subsequently, the exhaust gas is conducted to an acidic gas removing apparatus to remove HF. In this way, the silicon component is removed from the exhaust gas before introducing the exhaust gas into the catalyst layer. Therefore, the surface of the catalyst can be utilized effectively, and the decomposition reaction of the perfluoride compound can be improved.
摘要:
An exhaust gas containing a perfluoride component (PFC) and SiF4 is conducted into a silicon remover and brought into contact with water. A reaction water supplied from a water supplying piping and air supplied from an air supplying piping are mixed with the exhaust gas exhausted from the silicon remover. The exhaust gas containing water, air, and CF4 is heated at 700° C. by a heater. The exhaust gas containing PFC is conducted to a catalyst layer filled with an alumina group catalyst. The PFC is decomposed to HF and CO2 at a high temperature exhausted from the catalyst layer is cooled in a cooling apparatus. Subsequently, the exhaust gas is conducted to an acidic gas removing apparatus to remove HF. In this way, the silicon component is removed from the exhaust gas before introducing the exhaust gas into the catalyst layer. Therefore, the surface of the catalyst can be utilized effectively, and the decomposition reaction of the perfluoride compound can be improved.
摘要:
There is provided an exhaust purifying system for an internal combustion engine comprising a fuel supply valve for supplying fuel to an exhaust passage for an internal combustion engine of a vehicle, an ignition device for igniting the fuel supplied from the fuel supply valve, and a controller for heating the ignition device to selectively realize at least an ignition temperature Ti in which the fuel can be ignited and a waiting temperature Ts in which the fuel cannot be ignited. The controller controls the waiting temperature Ts to be the lower as a predicted deceleration time tp that is the time for which a decelerating state of the vehicle lasts is larger.
摘要:
An exhaust gas purifying apparatus for an internal combustion engine is provided with: a first catalyst (234) which is disposed in an exhaust passage of the internal combustion engine (200); a second catalyst (235) which is disposed in the exhaust passage on a downstream side of the first catalyst; a reducing agent supplying device (233) which is disposed on an upstream side of the first catalyst and which is configured to supply a reducing agent into the exhaust passage; and a reducing agent supply controlling device (100) which is configured to control the reducing agent supplying device such that an air-fuel ratio on the upstream side of the first catalyst becomes momentarily rich.
摘要:
A vehicle periphery image generation apparatus for generating a vehicle periphery image with a wide view. The apparatus includes an image acquisition unit that acquires vehicle periphery images obtained by vehicle mounted photographic cameras, a display device, a viewing point position setting unit that sets the position to a viewing point from a perpendicular upward direction, a fish-eye image generation unit for generating a fish-eye image using the periphery images and a position set by the viewing point position setting unit, a self vehicle image generation unit that generates a self vehicle image as the fish-eye image with the position set by the viewing point position setting unit, and a display image generation unit for generating an image to be displayed on the display device using the fish-eye image and the self vehicle image, wherein the position of the viewing point of the fish-eye image can be changed.
摘要:
An image processing apparatus separates in a scanned image a text area from a graphic area primarily including a graphic form or a graph. For the text area, neighboring black pixels are connected to perform character determination in a unit of a rectangle obtained by connecting the black pixels. For the graphic area, labeling processing is used to extract a circumscribed rectangle of consecutive black pixels, without connecting the black pixels, to perform character determination in a unit of the circumscribed rectangle.