摘要:
A magnetic detection device has stable characteristics having an area of a resist layer covering an insulating passivation layer, forming the magnetic detection element and a connection layer on a small stepped surface with high-precision, and preventing the resist layer from peeling, thereby providing a method of manufacturing the magnetic detection device. A resist layer 42 is overlapped through the insulating passivation layer 41 on an interconnection layer 35.
摘要:
A magnetic detection device has stable characteristics having an area of a resist layer covering an insulating passivation layer, forming the magnetic detection element and a connection layer on a small stepped surface with high-precision, and preventing the resist layer from peeling, thereby providing a method of manufacturing the magnetic detection device. A resist layer 42 is overlapped through the insulating passivation layer 41 on an interconnection layer 35.
摘要:
A magnetic detecting device includes a first and a second magnetoresistive element, and a first and a second fixed resistor connected in series to the first and the second magnetoresistive element, respectively. The first and the second magnetoresistive element each include a pinned magnetic layer and a free magnetic layer with a nonmagnetic conductive layer in between. The first and the second magnetoresistive element have the same layer structure except that the nonmagnetic conductive layers have different thicknesses. The thicknesses of the nonmagnetic conductive layers are set so that a positive interlayer coupling magnetic field acts between the free magnetic layer and the pinned magnetic layer of the first magnetoresistive element and a negative interlayer coupling magnetic field acts between the free magnetic layer and the pinned magnetic layer of the second magnetoresistive element. The first and the second fixed resistor have the same layer structure.
摘要:
The thickness of an antiferromagnetic layer (IrMn) and the thickness of a nonmagnetic interlayer (Cu) are adjusted so as to be within the area surrounded by boundaries a to f on the graph of FIG. 6 in which the horizontal axis represents the IrMn film thickness and the vertical axis represents the Cu film thickness. Consequently, the interlayer coupling magnetic field Hin can be made to be 10 Oe or more, and the variation in the interlayer coupling magnetic field Hin can be made to be 2 Oe or less. In addition, in the area surrounded by boundaries a to f, at any IrMn film thickness, the Cu film thickness range in which the variation can be made to be 2 Oe or less can be set over a wide range, as compared with a known structure.
摘要:
A magnetic sensor uses a magnetoresistance element which can be driven in a stable manner with a dipole irrespective of a polarity of an external magnetic field. A resistance value R of first magnetoresistance elements varies, and a resistance value of second magnetoresistance elements does not vary with a variation in magnetic field magnitude of the external magnetic field H1 in the positive direction. A resistance value R of second magnetoresistance elements varies and a resistance value of first magnetoresistance elements does not vary with a variation in magnetic field magnitude of the external magnetic field H2 in the negative direction. Accordingly, the magnetic sensor can be driven in a stable manner with a dipole irrespective of the polarity of the external magnetic field.
摘要:
A magnetic sensor uses a magnetoresistance element which can be driven in a stable manner with a dipole irrespective of a polarity of an external magnetic field. A resistance value R of first magnetoresistance elements varies, and a resistance value of second magnetoresistance elements does not vary with a variation in magnetic field magnitude of the external magnetic field H1 in the positive direction. A resistance value R of second magnetoresistance elements varies and a resistance value of first magnetoresistance elements does not vary with a variation in magnetic field magnitude of the external magnetic field H2 in the negative direction. Accordingly, the magnetic sensor can be driven in a stable manner with a dipole irrespective of the polarity of the external magnetic field.
摘要:
A two-layered copper-clad laminate material, in which one surface or both surfaces of a polyimide film having a thickness of 12.5 to 50 μm is subjected to a modification treatment by means of a glow discharge plasma treatment in an oxygen gas atmosphere, and a copper layer having a thickness of 1 to 5 μm is formed by means of sputtering or electroplating on one surface or both surfaces of the polyimide film after the modification treatment; characterized in that the integrated intensity ratio of a C1S peak at 287 to 290 eV to a C1S peak at 283 to 287 eV, obtained by analyzing the photoelectron spectroscopy (XPS) spectra of the surface of the polyimide film after the plasma treatment, is within the range of 0.03 to 0.11. The present invention aims at discovering; as a consequence of performing surface characterization by subjecting the PI film surface to XPS analysis before and after the plasma treatment, and of evaluating the dissolution properties and adhesive strength of the PI film before and after the plasma treatment; a two-layered copper-clad laminate material that is ideal to be processed during a wet PI etching step, and a production method for said two-layered copper-clad laminate material.
摘要:
A radio network controller includes a block error detection unit configured to receive a data block from the base station and to detect a block error, and a target SIR calculation unit configured to calculate a target SIR based on the detected block error rate. The target calculation unit sets a first time section, which indicates a time section from a detection of the block error to the notification of the target SIR is to the base station when the block error is detected, shorter than a second time section, which indicates a time section from the detection of the block error to the notification of the target SIR to the base station when the block error is not detected.
摘要:
A polarizing plate with optical compensation function, including a polarizing layer and an optically compensating layer, wherein the optically compensating layer includes an optically compensating A-layer including a stretched polymer film and an optically compensating B-layer including a cholesteric liquid crystal layer.
摘要:
A process cartridge detachably mountable to a main assembly of an electrophotographic image forming apparatus, wherein the main assembly includes a motor, a main assembly side gear for receiving driving force from the motor, a hole defined by twisted surfaces, the hole being substantially coaxial with the gear, and a main assembly side grounding contact provided in the hole, the process cartridge includes an electrophotographic photosensitive drum; process mechanisms actable on the photosensitive drum; and a projection engageable with the twisted surfaces, the projection being provided at a longitudinal end of the photosensitive drum, wherein when the main assembly side gear rotates with the hole and projection engaged with each other, rotational driving force is transmitted from the gear to the photosensitive drum through engagement between the hole and the projection; and a cartridge side grounding contact electrically connected with the electrophotographic photosensitive drum for electrically grounding the electrophotographic photosensitive drum when the process cartridge is mounted to the main assembly of the apparatus, the cartridge side grounding contact being provided on the projection so as to be electrically connectable with the main assembly side grounding contact