摘要:
The present invention aims to stabilize sound-electricity conversion characteristics of a diaphragm-type sound-electricity conversion device as well as to decrease the noise level of an ultrasonic diagnostic apparatus using the sound-electricity conversion device. The sound-electricity conversion device is configured by a capacitor cell including a lower electrode formed on a silicon substrate and an upper electrode over the lower electrode, the lower and upper electrodes sandwiching a cavity. An electrode short-circuit prevention film is formed on the upper electrode on the cavity side. The electrode short-circuit prevention film is formed of a material with an electrical time constant shorter than 1 second and longer than 10 microseconds, such as silicon nitride containing a stoichiometrically excessive amount of silicon. As a result, the electrode short-circuit prevention film has small electric conductivity, and thus it is made possible to prevent the film from being charged with electric charge and to avoid the drift of the electric charge. Consequently, the sound-electricity conversion characteristics of the sound-electricity conversion device stabilize, and further the sound noise level of the ultrasonic diagnostic apparatus decreases.
摘要:
The present invention aims to stabilize sound-electricity conversion characteristics of a diaphragm-type sound-electricity conversion device as well as to decrease the noise level of an ultrasonic diagnostic apparatus using the sound-electricity conversion device. The sound-electricity conversion device is configured by a capacitor cell including a lower electrode formed on a silicon substrate and an upper electrode over the lower electrode, the lower and upper electrodes sandwiching a cavity. An electrode short-circuit prevention film is formed on the upper electrode on the cavity side. The electrode short-circuit prevention film is formed of a material with an electrical time constant shorter than 1 second and longer than 10 microseconds, such as silicon nitride containing a stoichiometrically excessive amount of silicon. As a result, the electrode short-circuit prevention film has small electric conductivity, and thus it is made possible to prevent the film from being charged with electric charge and to avoid the drift of the electric charge. Consequently, the sound-electricity conversion characteristics of the sound-electricity conversion device stabilize, and further the sound noise level of the ultrasonic diagnostic apparatus decreases.
摘要:
The receive sensitivity of an ultrasound array transducer structured with a diaphragm electro-acoustic transducer (101) being a basic unit is affected by change in a charge amount with elapsed time due to leakage or the like, which causes drift of the primary beam sensitivity, degradation in the acoustic SN ratio due to a rise in the acoustic noise level, and degradation in the directivity of an ultrasound beam. To addressing this problem, a charge controller (charge monitor 211) is provided to control charge in an electro-acoustic transducer (101). A charge monitoring section (102) monitors the change in the charge amount. When change in the charge amount is small, transmit sensitivity or receive sensitivity is calibrated by a controller (104) by, for example, multiplying a receive signal by a calibration coefficient corresponding to the change amount. Further, when the change in the charge amount is large, for example, charges can be re-emitted from a charge emitter (103). The series of operations is controlled by the controller (104), and thus sensitivity variation caused by difference in the changes with elapsed time, particularly between the plural transducers, is calibrated.
摘要:
The receive sensitivity of an ultrasound array transducer structured with a diaphragm electro-acoustic transducer (101) being a basic unit is affected by change in a charge amount with elapsed time due to leakage or the like, which causes drift of the primary beam sensitivity, degradation in the acoustic SN ratio due to a rise in the acoustic noise level, and degradation in the directivity of an ultrasound beam. To addressing this problem, a charge controller (charge monitor 211) is provided to control charge in an electro-acoustic transducer (101). A charge monitoring section (102) monitors the change in the charge amount. When change in the charge amount is small, transmit sensitivity or receive sensitivity is calibrated by a controller (104) by, for example, multiplying a receive signal by a calibration coefficient corresponding to the change amount. Further, when the change in the charge amount is large, for example, charges can be re-emitted from a charge emitter (103).
摘要:
A transducer for transmitting and receiving ultrasonic waves to a diaphragm-based ultrasonic transducer device using silicon as a base material. An electro-acoustic transducer device which can have a first electrode formed on top of, or inside, a substrate and having a thin film provided on top of the substrate. The device can also have a second electrode formed on top of, or inside, the thin film. A void layer can be provided between the first electrode and the second electrode. A charge-storage layer can be provided between the first electrode and the second electrode. A source electrode and a drain electrode can also be provided for measuring a quantity of electricity stored in the charge-storage layer.
摘要:
In a semiconductor diaphragm type electro-acoustic transducer device having no necessity for a DC bias voltage applied as a result of a charge-stored layer being provide between electrodes, electro-mechanical conversion efficiency undergoes a change owing to time-dependent change in a quantity of stored electricity due to leakage of charge, and so forth. As for sensitivity of signal reception, provided by an ultrasonic array-transducer made up of the electro-acoustic transducer devices each as a basic unit, not only a main beam sensitivity undergoes drift as a result of drift in the electromechanical conversion efficiency, but also there result deterioration in an acoustic S/N ratio, and deterioration in directionality of an ultrasonic beam. In order to resolve those problems, there is provided an electro-acoustic transducer device comprising a first electrode formed on top of, or inside a substrate, a thin film using silicon or a silicon compound as a base material thereof, provided on top of the substrate, a second electrode formed on top of, or inside the thin film, a void layer provided between the first electrode and the second electrode, a charge-stored layer for storing charge given by the first electrode and the second electrode, provided between the first electrode and the second electrode, and a source electrode and a drain electrode, for measuring a quantity of electricity stored in the charge-storage layer.
摘要:
A MEMS switch is provided with a substrate, a diaphragm which is disposed on the substrate with interposing a cavity therebetween and is elastically deformed by electrostatic force, a switch drive electrode disposed on the substrate, and a switch drive electrode disposed on the diaphragm. Further, a charge accumulation electrode is disposed on the diaphragm between the switch drive electrode and the switch drive electrode. When charge is accumulated in the charge accumulation electrode, electrostatic force is generated between the charge accumulation electrode and the switch drive electrode, thereby deforming the diaphragm. Accordingly, a small-sized bistable MEMS switch whose structure is simple, whose holding state is stable for a long period, and which can be easily mounted together with a semiconductor integrated circuit can be realized.
摘要:
There is provided a semiconductor storage device which is capable of further reducing a size of a memory cell, and increasing a storage capacity. Plural memory cells each including a transistor formed on a semiconductor substrate, and a variable resistive device having a resistance value changed by voltage supply and connected between source and drain terminals of the transistor are arranged longitudinally and in an array to configure a three-dimensional memory cell array. A memory cell structure has a double channel structure in which an inside of a switching transistor is filled with a variable resistance element, particularly, a phase change material. The switching transistor is turned off by application of a voltage to increase a channel resistance so that a current flows in the internal phase change material to operate the memory.
摘要:
Performance of a non-volatile semiconductor storage device which performs electron writing by hot electrons and hole erasure by hot holes is improved. A non-volatile memory cell which performs a writing operation by electrons and an erasure operation by holes has a p-type well region, isolation regions, a source region, and a drain region provided on an Si substrate. A control gate electrode is formed via a gate insulating film between the source region and the drain region. In a left-side side wall of the control gate electrode, a bottom Si oxide film, an electric charge holding film, a top Si oxide film, and a memory gate electrode are formed. The electric charge holding film is formed from an Si nitride film stoichiometrically excessively containing silicon.
摘要:
A charge holding insulating film in a memory cell is constituted by a laminated film composed of a bottom insulating film, a charge storage film, and a top insulating film on a semiconductor substrate. Further, by performing a plasma nitriding treatment to the bottom insulating film, a nitride region whose nitrogen concentration has a peak value and is 1 atom % or more is formed on the upper surface side in the bottom insulating film. The thickness of the nitride region is set to 0.5 nm or more and 1.5 nm or less, and the peak value of nitrogen concentration is set to 5 atom % or more and 40 atom % or less, and a position of the peak value of nitrogen concentration is set within 2 nm from the upper surface of the bottom insulating film, thereby suppressing an interaction between the bottom insulating film and the charge storage film.