摘要:
A method for preparing a thin film polymer structure having a functional substance on an A surface and a B surface of the film, the polymer structure being obtained by: (a) adsorbing polyfunctional molecules to a region of an arbitrary shape in an interface between a substrate body and a liquid phase; (b) polymerizing and/or crosslinking the adsorbing polyfunctional molecules to form a polymer thin film; (c) bonding a functional substance to the A surface of the formed thin film and then forming a soluble support film on the A surface; (d) exfoliating the thin film and the soluble support film from the substrate body; and (e) bonding to the B surface of the thin film a functional substance identical to or different from the functional substance bonded to the A surface and then dissolving the soluble support film with a solvent.
摘要:
A thin film polymer structure having a functional substance on the face (A surface) and reverse face (B surface) of the film, obtained by the steps of (a) causing polyfunctional molecules to adsorb to an area of an arbitrary shape in an interface between a substrate body and a liquid phase; (b) polymerizing and/or crosslinking the adsorbing polyfunctional molecules to form a polymer thin film; (c) bonding a functional substance to the A surface of the formed thin film and then (d) forming a soluble support film thereon; exfoliating the thin film and the soluble support film from the substrate body; (e) bonding to the B surface of the thin film a functional substance identical to or different from the abovementioned functional substance and then dissolving the soluble support film with a solvent. A method for preparing a thin film molecular structure having a functional substance on the face (A surface) and reverse face (B surface) of the film is offered through the above process.
摘要:
The present invention provides a thin film having an excellent manageability, moisture-retaining effect, and unevenness correction effect and a thin film cosmetic. The thin film of the present invention is a laminate of (a) a base film supporting hyaluronic acid or a derivative thereof and (b) a carrier, wherein the thickness of film (a) is 10 to 500 nm.
摘要:
The present invention provides a pharmaceutical preparation comprising a layer-by-layer thin film that is produced by alternately layering a polycation and a polyanion, and a drug loaded onto the layer-by-layer thin film. As a result, a pharmaceutical preparation with a prolonged duration of drug action with a single dose is provided.
摘要:
The present invention has an object of providing a drug carrier capable of controlling in vivo pharmacokinetics. The present invention is directed to a drug carrier comprising a molecular assembly having a drug incorporated therein, and the above object can be achieved by a part of the amphiphilic molecules included in the molecular assembly being released from the molecular assembly by an external environmental change. The present invention utilizes a phenomenon that the hydrophilic-hydrophobic balance of the amphiphilic molecules is shifted toward hydrophilicity by an external environmental change and thus the amphiphilic molecules are freed from the molecular assembly.
摘要:
A thin film polymer structure obtained by the steps of:(a) causing polyfunctional molecules to adsorb to an area of an arbitrary shape in an interface between a substrate body and a liquid phase; (b) polymerizing and/or crosslinking the adsorbing polyfunctional molecules to form a polymer thin film; and (c) exfoliating the formed thin film from the substrate body.
摘要:
The present invention has an object of providing a drug carrier capable of controlling in vivo pharmacokinetics. The present invention is directed to a drug carrier comprising a molecular assembly having a drug incorporated therein, and the above object can be achieved by a part of the amphiphilic molecules included in the molecular assembly being released from the molecular assembly by an external environmental change. The present invention utilizes a phenomenon that the hydrophilic-hydrophobic balance of the amphiphilic molecules is shifted toward hydrophilicity by an external environmental change and thus the amphiphilic molecules are freed from the molecular assembly.
摘要:
A porous ultra-thin polymer film has a film thickness of 10 nm-1000 nm. A method of producing the porous ultra-thin polymer film includes dissolving two types of mutually-immiscible polymers in a first solvent in an arbitrary proportion to obtain a solution; applying the solution onto a substrate and then removing the first solvent from the solution applied onto the substrate to obtain a phase-separated ultra-thin polymer film that has been phase-separated into a sea-island structure; and immersing the ultra-thin polymer film in a second solvent which is a good solvent for the polymer of the island parts but a poor solvent for a polymer other than the island parts to remove the island parts, thereby obtaining a porous ultra-thin polymer film.
摘要:
A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.
摘要:
A semiconductor device includes: a high dielectric constant gate insulating film formed on an active region in a substrate; a gate electrode formed on the high dielectric constant gate insulating film; and an insulating sidewall formed on each side surface of the gate electrode. The high dielectric constant gate insulating film is continuously formed so as to extend from under the gate electrode to under the insulating sidewall. At least part of the high dielectric constant gate insulating film located under the insulating sidewall has a smaller thickness than a thickness of part of the high dielectric constant gate insulating film located under the gate electrode.