摘要:
A liquid crystal device 1, that is, an electrooptic device, has a second electrode 11 provided so as to oppose a first electrode 10, and a liquid crystal provided between the first electrode 10 and the second electrode 11. This liquid crystal device 1 further has a first substrate 2 on which the first electrode 10 is provided and a wire 14 which is formed on the first substrate 2 and is electrically connected to the second electrode 11 at a conduction position 4a. Since the wire 14 extends inside the conduction position 4a, the picture frame region that is outside a sealing material 4 can be decreased.
摘要:
This present invention provides a liquid-crystal panel that presents a high-density wiring while maintaining reliability of the wiring. Odd-numbered scanning lines are connected to a first wiring group while even-numbered scanning lines are connected to a second wiring group. Each of the scanning lines is supplied with a scanning signal the polarity of which is inverted every horizontal scanning period. Among wirings forming the first wiring group and the second wiring group, a line-to-line voltage between any adjacent wirings becomes zero volt for a majority of the time. Accordingly, degradation of the wirings due to electrolytic corrosion is controlled even if the spacing between the wirings is narrowed.
摘要:
A wiring substrate is formed of a plurality of metal wirings 14e formed on a substrate 7c. A guard wiring 29 fabricated of an electrically conductive oxide such as ITO is interposed between at least a pair of adjacent ones of a plurality of metal wirings 14e. When voltages V1, V2, V3, and V4 applied to the metal wirings 14e are related to be V1>V2>V3>V4, a guard wiring 29 is present between a metal wiring 14e functioning as an anode and a metal wiring 14e functioning as a cathode, and the anode metal wiring 14e is prevented from being corroded.
摘要翻译:布线基板由形成在基板7c上的多个金属布线14e形成。 由诸如ITO的导电氧化物制成的保护布线29插入在多个金属布线14e中的至少一对相邻的金属布线14e之间。 当施加到金属布线14e的电压V 1,V 2,V 3和V 4与V 1> V 2> V 3> V 4相关时,保护布线29存在于金属布线14e的功能 作为阳极和用作阴极的金属布线14e,并且防止阳极金属布线14e被腐蚀。
摘要:
An electro-optical device includes a substrate having a display region; and an extending region extending from the display region. The extending region is provided with wiring lines, and at least some wiring lines, which are disposed to be adjacent to each other, are correspondingly disposed in a plurality of different layers.
摘要:
In a liquid crystal display that includes a second substrate that supports a liquid crystal and data lines formed on the surface of the second substrate, a third insulating layer that covers the data lines is formed on the surface of the second substrate. On the surface of the third insulating layer, chip connecting wiring is formed over a covered region covered with a sealing material and the liquid crystal and the region other than the covered region. By connecting the chip connecting wiring to the data lines via contact holes formed within the covered region of the third insulating layer, corrosion of the wiring formed on the substrate is inhibited.
摘要:
A semiconductor device in the first embodiment includes: an electrode pad and a resin projection, formed on an active surface; a conductive film deposited from a surface of the electrode pad to a surface of the resin projection; a resin bump formed with the resin projection and with the conductive film. The semiconductor device is conductively connected to the opposing substrate through the resin bump electrode. The testing electrode is formed with the conductive film that is extended and applied to the opposite side of the electrode pad across the resin projection.
摘要:
An electrooptic-device substrate includes a first IC-mounting area on which a first IC is mounted following a substrate edge of the electrooptic-device substrate, at least one second IC-mounting area on which a second IC is mounted, and a substrate-connection area to which a flexible substrate is connected, wherein the substrate-connection area is provided so as to be nearer the substrate edge than the first and second IC-mounting areas, and the electrooptic-device substrate includes a first wiring pattern extending from the first IC-mounting area to the substrate-connection area and a second wiring pattern that extending from the second IC-mounting area, between first pads formed in the first IC-mounting area and reaching the substrate-connection area.
摘要:
To construct an unbreakable probe for inspecting a liquid crystal display panel, and to substantially reduce a manufacturing cost thereof, a plurality of terminals subjected to patterning on a probe unit 280 having flexibility are contacted to a plurality of terminals of scanning lines formed on a substrate 200. A plurality of terminals subjected to patterning on a probe unit 380 having flexibility are contacted to a plurality of terminals of data lines formed on a substrate 300 each other. A driving signal for driving the scanning lines is supplied to respective scanning lines via the terminals subjected to patterning on the probe unit 280, while a driving signal for driving the data lines is supplied to respective data lines via the terminals subjected to patterning on the probe unit 380.
摘要:
An electro-optical device includes a substrate having a display region; and an extending region extending from the display region. The extending region is provided with wiring lines, and at least some wiring lines, which are disposed to be adjacent to each other, are correspondingly disposed in a plurality of different layers.
摘要:
A liquid crystal device comprises a pair of substrates 2a and 2b, liquid crystal L held between the substrates 2a and 2b, and an IC 13 mounted on an overhang section 2c of the substrate 2a. A terminal column 26a comprises a plurality of terminals 18 aligned in a direction away from the liquid crystal L. The terminal column 26a has, in the order of the closeness to the liquid crystal L, a first noneffective terminal region within a distance “A” from a first side of the IC, an effective terminal region X continuing from the first noneffective terminal region, and a second noneffective terminal region within a distance “B” from a second side of the IC, the second noneffective terminal region continuing from the effective terminal region. The distances A and B are adjusted to satisfy the relationship A>B.