摘要:
A method of preparing the sugar 1,5-D-anhydrofructose is described. The method comprises treating an &agr;-1,4-glucan with an &agr;-1,4-glucan lyase wherein the enzyme is used in substantially pure form. In a preferred embodiment, if the glucan contains links other than and in addition to the &agr;-1,4-links, the &agr;-1,4-glucan lyase is used in conjunction with a suitable reagent that can break the other links.
摘要:
A method of preparing .alpha.-1,4-glucan lyase enzymes is described. The method comprises isolating the enzymes from a fungally infected algae. The amino acid sequences of the enzymes have been determined. The nucleic acid sequences coding for the enzymes have also been determined.
摘要:
A method of preparing .varies.-glucan lyase enzymes is described. The method comprises isolating the enzymes from a culture of fungus wherein the culture is substantially free of any other organisms. Also described are the amino acid sequences for the enzymes and their coding sequences.
摘要:
A method of preparing 1,5-D-anhydrofructose in large quantities includes treating &agr;-1,4-glucan with a substantially pure &agr;-1,4-glucan lyase, which has been isolated from algae alone, wherein 1,5-D-anhydrofructose is produced directly from the &agr;-1,4-glucan.
摘要:
This invention relates to amylase polypeptides, and nucleic acids encoding the polpypeptides and uses thereof. The amylases of the present invention have been engineered to have more beneficial qualities. Specifically, the amylases of the current invention show an altered exospecifity.
摘要:
This invention relates to amylase polypeptides, and nucleic acids encoding the polpypeptides and uses thereof. The amylases of the present invention have been engineered to have more beneficial qualities. Specifically, the amylases of the current invention show an altered exospecifity.
摘要:
A method of selecting genetically transformed cells from a population of cells comprising introducing a desired nucleotide sequence and a co-introduced nucleotide sequence into the genome of a cell whereby the desired nucleotide sequence or the co-introduced nucletoide sequence induces a positive effect by giving the transformed cells a competitive advantage when the population of cells are supplied with an inactive compound thereby allowing the transformed cells to be identified and selected from the non-transformed cells by means defined as positive selection; as well as cells transformed according to the method and plants derived therefrom. The invention further relates to novel glucuronide compounds including cytokinin glucuronide compounds for use in the method.
摘要:
The present invention provides a method for identifying or selecting from a population of eukaryotic cells cultivated on or in a medium containing at least one compound, cells which have a metabolic advantage as a result of having being transformed, wherein: i) the cells are transformed with a nucleotide sequence or a co-introduced nucleotide sequence one of which comprises a region which: (a) encodes a protein which is involved in the metabolism of the compound, and/or (b) regulates the activity of the protein; and ii) the compound is mannose or xylose or a derivative or a precursor of these, or a substrate of the protein, or is capable of being metabolized by the transformed cells into such a substrate, with the proviso that the compound is not mannose when the protein is mannose 6 phosphate isomerase.The invention also includes a method according to the preceding paragraph wherein the compounds are not so limited with the proviso that an agent which reduces the toxicity to the cells of the compound is added to the medium. It is preferred that where a toxicity-reducing agent has been added to the culture medium, the compound is mannose and the nucleotide or co-introduced nucleotide sequence encodes mannose-6-phosphate isomerase.
摘要:
This invention relates to amylase polypeptides, and nucleic acids encoding the polypeptides and uses thereof. The amylases of the present invention have been engineered to have more beneficial qualities. Specifically the amylases of the current invention show an altered exospecifity.
摘要:
The substrate specificity of a lipolytic enzyme can be modified by making alterations to the amino acid sequence in a defined region of the lipolytic enzyme, so as to increase the level of a desired activity or to decrease the level of an undesired activity. Thus, the inventors have developed lipolytic enzyme variants with a modified amino acid sequence with a substrate specificity which can be tailored for specific uses.