摘要:
The described embodiments relate to substrates having features formed therein and methods of forming same. One exemplary method forms a blind feature through a majority of a thickness of a substrate, the blind feature being defined by at least one sidewall surface and a bottom surface. The method also applies an etch resistant material to the blind feature and removes the etch resistant material from at least a portion of the bottom surface. The method further wet etches the substrate at least through the bottom surface sufficient to form a through feature through the thickness of the substrate.
摘要:
A method of method of making a corrosion resistant print head die comprises creating a self-ionized plasma (SIP) of a coating material; establishing a bias on a print head die comprising a plurality of feed slots (40), each feed slot (40) comprising side wall surfaces (61); and causing the coating material plasma to be deposited on the surfaces to form a protective coating, wherein at least a portion of the coating material is deposited on at least a portion of the surfaces by resputtering. In some cases, the feed slots have an aspect ratio greater than 2. In some cases, the feed slot comprises at least one rib (41), each rib (41) comprising a top surface (68), two side surfaces (66), and an under surface (69), and the formed protective coating is deposited on the top surface (68), two side surfaces (66), and under surface (69) of each rib (41).
摘要:
A fluid ejection cartridge includes a body, having fluid passageways at a first spacing, a die, having fluid passage-ways at a second closer spacing, and an interposer, bonded to the body at a first surface and plasma bonded to the die at a second surface. The interposer includes fluid passageways between the first and second surfaces, which are substantially aligned with the respective passageways of the body and the die.
摘要:
Methods and an apparatus are disclosed, wherein a print head die includes a slot and ribs across the slot. The ribs are recessed from one or both sides of the die.
摘要:
The invention includes a process for copper metallization of an integrated circuit, comprising the steps of forming tantalum on a substrate, forming tantalum nitride over the tantalum, forming titanium nitride over the tantalum nitride, forming copper over the titanium nitride and integrated circuits made thereby. The invention is particularly useful in forming damascene structures with large aspect ratios.
摘要:
The present invention provides a method of forming a metal oxide metal (MOM) capacitor on a substrate, such as a silicon substrate, of a semiconductor wafer in a rapid thermal process (RTP) machine. The MOM capacitor is fabricated by forming a metal layer on the semiconductor substrate. The metal layer is then subjected to a first rapid thermal process in a substantially inert but nitrogen-free atmosphere that consumes a portion of the metal layer to form a first metal electrode layer and a silicide layer between the first metal electrode and the semiconductor substrate. The semiconductor wafer is then subjected to a second rapid thermal process. During this process, the remaining portion of the metal layer is oxidized to form a metal oxide on the first metal electrode, which serves as the dielectric layer of the MOM capacitor. Following the formation of the dielectric layer, a second metal electrode layer is then conventionally formed on the metal oxide, which completes the formation of the MOM capacitor. Preferably, the first electrode layer and the metal oxide layer are formed in a single RTP machine.
摘要:
A slot is formed that reaches through a first side of a silicon substrate to a second side of the silicon substrate. A trench is laser patterned. The trench has a mouth at the first side of the silicon substrate. The trench does not reach the second side of the silicon substrate. The trench is dry etched until a depth of at least a portion of the trench is extended approximately to the second side of the silicon substrate (12). A wet etch is performed to complete formation of the slot. The wet etch etches silicon from all surfaces of the trench.
摘要:
An interconnect structure of a semiconductor device includes a tungsten plug (14) deposited in a via or contact window (11). A barrier layer (15) separates the tungsten plug (14) from the surface of a dielectric material (16) within which the contact window or via (11) is formed. The barrier layer (15) is a composite of at least two films. The first film formed on the surface of the dielectric material (16) within the via (11) is a tungsten silicide film (12). The second film is a tungsten film (13) formed on the tungsten silicide film (12). A tungsten plug (14) is formed on the tungsten film (13) to complete interconnect structure. The barrier layer (15) is deposited using a sputtering technique performed in a deposition chamber. The chamber includes tungsten silicide target (19) from which the tungsten silicide film (12) is deposited, and a tungsten coil (20) from which the tungsten film (20) is deposited.
摘要:
A method is for cleaning via openings during manufacturing of integrated circuits. The method preferably comprises the steps of sputter cleaning the via opening at least once, and exposing the via opening to a reducing atmosphere at least once. The method may include alternatingly repeating the sputter cleaning and exposing steps. The step of sputter cleaning is preferably performed prior to the step of exposing, and a sputter cleaning may be performed after a last step of exposing the via opening to the reducing atmosphere. In one embodiment, the exposed metal portion comprises a metal compound, such as an oxide. Accordingly, the step of sputter cleaning removes at least a portion of the metal oxide, and the step of exposing comprises reducing at least a portion of the metal oxide. The invention is particularly applicable when the metal interconnection layer is a copper, as copper readily oxides at its exposed surface.