摘要:
Aspects of the disclosure pertain to methods of depositing silicon oxide layers on substrates. In embodiments, silicon oxide layers are deposited by flowing a silicon-containing precursor having a Si—O bond, an oxygen-containing precursor and a second silicon-containing precursor, having both a Si—C bond and a Si—N bond, into a semiconductor processing chamber to form a conformal liner layer. Upon completion of the liner layer, a gap fill layer is formed by flowing a silicon-containing precursor having a Si—O bond, an oxygen-containing precursor into the semiconductor processing chamber. The presence of the conformal liner layer improves the ability of the gap fill layer to grow more smoothly, fill trenches and produce a reduced quantity and/or size of voids within the silicon oxide filler material.
摘要:
Aspects of the disclosure pertain to methods of depositing silicon oxide layers on substrates. In embodiments, silicon oxide layers are deposited by flowing a silicon-containing precursor having a Si—O bond, an oxygen-containing precursor and a second silicon-containing precursor, having both a Si—C bond and a Si—N bond, into a semiconductor processing chamber to form a conformal liner layer. Upon completion of the liner layer, a gap fill layer is formed by flowing a silicon-containing precursor having a Si—O bond, an oxygen-containing precursor into the semiconductor processing chamber. The presence of the conformal liner layer improves the ability of the gap fill layer to grow more smoothly, fill trenches and produce a reduced quantity and/or size of voids within the silicon oxide filler material.
摘要:
Aspects of the disclosure pertain to methods of depositing conformal silicon oxide multi-layers on patterned substrates. The conformal silicon oxide multi-layers are each formed by depositing multiple sub-layers. Sub-layers are deposited by flowing BIS(DIETHYLAMINO)SILANE (BDEAS) and an oxygen-containing precursor into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface. A plasma treatment may follow formation of sub-layers to further improve conformality and to decrease the wet etch rate of the conformal silicon oxide multi-layer film. The deposition of conformal silicon oxide multi-layers grown according to embodiments have a reduced dependence on pattern density while still being suitable for non-sacrificial applications.
摘要:
Aspects of the disclosure pertain to methods of depositing conformal silicon oxide multi-layers on patterned substrates. The conformal silicon oxide multi-layers are each formed by depositing multiple sub-layers. Sub-layers are deposited by flowing BIS(DIETHYLAMINO)SILANE (BDEAS) and an oxygen-containing precursor into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface. A plasma treatment may follow formation of sub-layers to further improve conformality and to decrease the wet etch rate of the conformal silicon oxide multi-layer film. The deposition of conformal silicon oxide multi-layers grown according to embodiments have a reduced dependence on pattern density while still being suitable for non-sacrificial applications.
摘要:
Aspects of the disclosure pertain to methods of preferentially filling narrow trenches with silicon oxide while not completely filling wider trenches and/or open areas. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively dense first portion of a silicon oxide layer followed by a more porous (and more rapidly etched) second portion of the silicon oxide layer. Narrow trenches are filled with dense material whereas open areas are covered with a layer of dense material and more porous material. Dielectric material in wider trenches may be removed at this point with a wet etch while the dense material in narrow trenches is retained.
摘要:
Methods of depositing silicon oxide layers on substrates involve flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that a uniform silicon oxide growth rate is achieved across the substrate surface. The surface of silicon oxide layers grown according to embodiments may have a reduced roughness when grown with the additive precursor. In other aspects of the disclosure, silicon oxide layers are deposited on a patterned substrate with trenches on the surface by flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that the trenches are filled with a reduced quantity and/or size of voids within the silicon oxide filler material.
摘要:
Aspects of the disclosure pertain to methods of preferentially filling narrow trenches with silicon oxide while not completely filling wider trenches and/or open areas. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively dense first portion of a silicon oxide layer followed by a more porous (and more rapidly etched) second portion of the silicon oxide layer. Narrow trenches are filled with dense material whereas open areas are covered with a layer of dense material and more porous material. Dielectric material in wider trenches may be removed at this point with a wet etch while the dense material in narrow trenches is retained.
摘要:
Methods of depositing silicon oxide layers on substrates involve flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that a uniform silicon oxide growth rate is achieved across the substrate surface. The surface of silicon oxide layers grown according to embodiments may have a reduced roughness when grown with the additive precursor. In other aspects of the disclosure, silicon oxide layers are deposited on a patterned substrate with trenches on the surface by flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that the trenches are filled with a reduced quantity and/or size of voids within the silicon oxide filler material.
摘要:
Aspects of the disclosure pertain to methods of depositing dielectric layers on patterned substrates. In embodiments, dielectric layers are deposited by flowing BIS(DIETHYLAMINO)SILANE (BDEAS), ozone and molecular oxygen into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface. The deposition of dielectric layers grown according to embodiments may have a reduced dependence on pattern density while still being suitable for non-sacrificial applications.
摘要:
Aspects of the disclosure pertain to methods of depositing conformal silicon oxide layers on patterned substrates. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface having heterogeneous materials and/or a heterogeneous pattern density distribution. The deposition of dielectric layers grown according to embodiments may have a reduced dependence on underlying material and pattern density while still being suitable for non-sacrificial applications. Reduction in dependence on pattern density is achieved by terminating deposition near the end of an incubation period. Multiple deposition cycles may be conducted in series since the beneficial nature of the incubation period may repeat after a pause in deposition.