摘要:
The present invention includes a template for patterning liquids disposed on a substrate. The template includes a body having opposed first and second surfaces with one surface having at least one recess and the other surface having a patterning region. In one embodiment, the template may be mounted to a fluid chamber having an inlet and a throughway. The template may be connected to the throughway and the inlet is connected to a fluid source.
摘要:
The present invention is directed to a method forming conductive templates that includes providing a substrate; forming a mesa on the substrate; and forming a plurality of recessions and projections on the mesa with a nadir of the recessions comprising electrically conductive material and the projections comprising electrically insulative material. It is desired that the mesa be substantially transparent to a predetermined wavelength of radiation, for example ultraviolet radiation. As a result, it is desired to form the electrically conductive material from a material that allows ultraviolet radiation to propagate therethrough. In the present invention indium tin oxide is a suitable material from which to form the electrical conductive material.
摘要:
The present invention includes a conforming template for patterning liquids disposed on substrates. The template includes a body having opposed first and second surfaces. The first surface includes a plurality of recessed regions with a patterning region being disposed between adjacent recessed regions. Specifically, the recessed regions define flexure regions about which each patterning region may move independent of the remaining patterning regions of the template. In one embodiment the template is mounted to a fluid chamber having an inlet and a throughway. The template is connected to the throughway and the inlet is connected to a fluid source to facilitate deformation of the template to conform to a profile of a surface adjacent thereto.
摘要:
The present invention is directed to a method forming conductive templates that includes providing a substrate; forming a mesa on the substrate; and forming a plurality of recessions and projections on the mesa with a nadir of the recessions comprising electrically conductive material and the projections comprising electrically insulative material. It is desired that the mesa be substantially transparent to a predetermined wavelength of radiation, for example ultraviolet radiation. As a result, it is desired to form the electrically conductive material from a material that allows ultraviolet radiation to propagate therethrough. In the present invention indium tin oxide is a suitable material from which to form the electrical conductive material.
摘要:
Described are systems for patterning a substrate by imprint lithography. Imprint lithography systems include an imprint head configured to hold a template in a spaced relation to a substrate. The imprint lithography system is configured to dispense an activating light curable liquid onto a substrate or template. The system includes a light source that applies activating light to cure the activating light curable liquid.
摘要:
The present invention is directed to methods for patterning a substrate by imprint lithography. Imprint lithography is a process in which a liquid is dispensed onto a substrate. A template is brought into contact with the liquid and the liquid is cured. The cured liquid includes an imprint of any patterns formed in the template. In one embodiment, the imprint process is designed to imprint only a portion of the substrate. The remainder of the substrate is imprinted by moving the template to a different portion of the template and repeating the imprint lithography process.
摘要:
Methods of forming continuous layers on regions of a substrate are described. Generally, an imprint lithography template may contact liquid positioned on the substrate. The liquid may be cured forming a masking layer, and the imprint lithography template separated from the masking layer. Prior to separation, pressurized gas and/or vacuum may be applied between the template and the substrate. Additionally, during separation, pressurized gas and/or vacuum may be applied between the template and the substrate.
摘要:
The present invention includes a template for patterning liquids disposed on a substrate. The template includes a body having opposed first and second surfaces with one surface having at least one recess and the other surface having a patterning region. In one embodiment, the template may be mounted to a fluid chamber having an inlet and a throughway. The template may be connected to the throughway and the inlet is connected to a fluid source.
摘要:
The present invention is directed to a chucking system to modulate substrates so as to properly shape and position the same with respect to a wafer upon which a pattern is to be formed with the substrate. The chucking system includes a chuck body having first and second opposed sides. A side surface extends therebetween. The first side includes first and second spaced-apart recesses defining first and second spaced-apart support regions. The first support region cinctures the second support region and the first and second recesses. The second support region cinctures the second recess, with a portion of the body in superimposition with the second recess being transparent to radiation having a predetermined wavelength. The second side and the side surface define exterior surfaces. The body includes throughways placing the first and second recesses in fluid communication with one of the exterior surfaces.
摘要:
The present invention is directed to methods for patterning a substrate by imprint lithography. Imprint lithography is a process in which a liquid is dispensed onto a substrate. A template is brought into contact with the liquid and the liquid is cured. The cured liquid includes an imprint of any patterns formed in the template. In one embodiment, the imprint process is designed to imprint only a portion of the substrate. The remainder of the substrate is imprinted by moving the template to a different portion of the template and repeating the imprint lithography process.