Abstract:
A single crystal is grown in a float zone which is inductively heated and the crystallizing single crystal is rotated in a direction of rotation which is periodically reversed at intervals in accordance with an alternating plan, wherein a dwell time during which the single crystal is in a state of rest because of the reversal of the direction of rotation is limited to no more than 60 ms.
Abstract:
Single crystals are produced by means of the floating zone method, wherein the single crystal crystallizes below a melt zone at a crystallization boundary, and the emission of crystallization heat is impeded by a reflector surrounding the single crystal, wherein the single crystal is heated in the region of an outer edge of the crystallization boundary by means of a heating device in a first zone, wherein a distance Δ between an outer triple point Ta at the outer edge of the crystallization boundary and a center Z of the crystallization boundary is influenced. An apparatus for producing the single crystal provides a heat source below the melting induction coil and above the reflector.
Abstract:
Single crystal silicon cylindrical portions grown by the CZ method and highly doped with one or more n-type dopants so as to have a resistivity of not more than 2 mΩcm are prepared by directing dopant in a gas flow from an external sublimation apparatus into the pulling chamber through or below the heat shield, to the bottom of an annular ring of the heat shield and from there through a plurality of nozzles toward the surface of the melt.
Abstract:
A device for producing a single crystal by crystallizing the single crystal in a melt zone, comprising a housing, an inductor for generating heat in the melt zone, a reheater which surrounds and applies thermal radiation to the crystallizing single crystal, and a separating bottom which delimits downward an intermediate space between the reheater and a wall of the housing at a lower end of the reheater.
Abstract:
A crystal of semiconductor material is produced in an apparatus having a crucible with a crucible bottom and a crucible wall, the crucible bottom having a top surface, an underside, and a multitude of openings disposed between the crucible wall and a center of the crucible bottom, and elevations disposed on the top surface and the underside of the crucible bottom; and an induction heating coil disposed below the crucible for melting semiconductor material and stabilizing a melt of semiconductor material covering a growing crystal of semiconductor material. The growth process comprises generating a bed of a semiconductor material feed on the top surface of the crucible bottom and melting semiconductor material on the bed using the induction heating coil.
Abstract:
Single crystals are produced by means of the floating zone method, wherein the single crystal crystallizes below a melt zone at a crystallization boundary, and the emission of crystallization heat is impeded by a reflector surrounding the single crystal, wherein the single crystal is heated in the region of an outer edge of the crystallization boundary by means of a heating device in a first zone, wherein a distance Δ between an outer triple point Ta at the outer edge of the crystallization boundary and a center Z of the crystallization boundary is influenced. An apparatus for producing the single crystal provides a heat source below the melting induction coil and above the reflector.
Abstract:
A device for producing a single crystal by crystallizing the single crystal in a melt zone, comprising a housing, an inductor for generating heat in the melt zone, a reheater which surrounds and applies thermal radiation to the crystallizing single crystal, and a separating bottom which delimits downward an intermediate space between the reheater and a wall of the housing at a lower end of the reheater.