摘要:
Embodiments of the invention relate generally to semiconductors and semiconductor fabrication techniques, and more particularly, to devices, integrated circuits, substrates, wafers and methods to form barrier structures to facilitate formation of silicon carbide epitaxy on a substrate, such as a silicon-based substrate, for fabricating various silicon carbide-based semiconductor devices, including silicon carbide-based memory elements and cells. In some embodiments, a semiconductor wafer includes a silicon substrate, a barrier-seed layer disposed over the silicon substrate, and a silicon carbide layer formed over the barrier-seed layer. The semiconductor wafer can be used to form a variety of SiC-based semiconductor devices. In one embodiment, a silicon carbide-based memory element is formed to include barrier-seed layer, multiple silicon carbide layers formed over the barrier-seed layer, and a dielectric layer formed over the multiple silicon carbide layers.
摘要:
Embodiments of the invention relate generally to semiconductors and semiconductor fabrication techniques, and more particularly, to devices, integrated circuits, substrates, and methods to form silicon carbide structures, including doped epitaxial layers (e.g., P-doped silicon carbide epitaxial layers), by supplying sources of silicon and carbon with sequential emphasis. In some embodiments, a method of forming an epitaxial layer of silicon carbide can include depositing a layer in the presence of a silicon source, and purging gaseous materials subsequent to depositing the layer. Further, the method can include converting the layer into a sub-layer of silicon carbide in the presence of a carbon source and a dopant, and purging other gaseous materials. In some embodiments, the presence of the silicon source can be independent of the presence of the carbon source and/or the dopant.
摘要:
Embodiments of the invention relate generally to semiconductors and semiconductor fabrication techniques, and more particularly, to devices, integrated circuits, substrates, and methods to form silicon carbide structures, including epitaxial layers, by supplying sources of silicon and carbon with sequential emphasis. In at least some embodiments, a method of forming an epitaxial layer of silicon carbide can include depositing a layer on a substrate in the presence of a silicon source, and purging gaseous materials subsequent to depositing the layer. Further, the method can include converting the layer into a sub-layer of silicon carbide in the presence of a carbon source, and purging other gaseous materials subsequent to converting the layer. The presence of the silicon source can be independent of the presence of the carbon source. In some embodiments, dopants, such as n-type dopants, can be introduced during the formation of the epitaxial layer of silicon carbide.
摘要:
A thin, small outline IC leadframe plastic package to be used to assemble high performance, high speed semiconductor memory IC devices such as dynamic random access memories (DRAM) having a high data transfer rate in the range of 1 GigaHertz. The package leadframe is electrically interconnected to the IC device input-output pads by either electrically conductive (e.g. solder) bumps that are flip-chip bonded to the IC device or by of an interposer. The interposer contains integral curled micro-spring contacts at opposite ends of conductive fan out traces. The interposer is attached to the leadframe bonding pads by way of tape automated bonding, soldering, or adhesive bonding. The leadframe that is interconnected to the IC device by the aforementioned flip-chip bumps or the interposer is encapsulated and trimmed to form either gull-wing style perimeter leads as a standard thin small outline package (TSOP) or wrap around leads as a micro-leadframe (MLF) package.
摘要:
A vertically integrated chip scale package (CSP) assembly comprising two or more single chip package subassemblies having an upper level CSP subassembly superimposed directly above a lower level CSP subassembly. The lower-most CSP subassembly in the vertical stack contains an array of solder balls for interconnection to a printed wiring board. The vertical electrical connection between the upper and lower level package subassemblies is accomplished by using wire bonding from perimeter wire bonding pads located on an upper level substrate extension to matching perimeter wire bonding pads located on a lower level substrate extension that is longer in length than the upper level substrate extension. The stacked package subassemblies are bonded together by using a thin adhesive material, and the perimeter wire bonds are encapsulated by an encapsulant for protection. The assembled vertical stack has the appearance of a single CSP but is shorter in height than two individual packages that are stacked together with solder ball interconnects located therebetween.