Abstract:
A semiconductor device mainly comprises a chip disposed on the upper surface of a substrate. The upper surface of the substrate is provided with a ground ring, a power ring, and a plurality of conductive traces arranged at the periphery of the ground ring and the power ring. The semiconductor device comprises at least a surface-mountable device connected across the ground ring and the power ring. The semiconductor device of the present invention is characterized by having at least a bonding wire formed across the surface-mountable device. The bonding wire is connected between one of the bonding pads of the chip and the power ring wherein at least one downward depression is formed in a lengthen portion at a top of the bonding wire.
Abstract:
A multichip assembly includes semiconductor devices or semiconductor device components with outer connectors on peripheral edges thereof. The outer connectors are formed by creating via holes along boundary lines between adjacent, unsevered semiconductor devices, or semiconductor device components, then plating or filling the holes with conductive material. When adjacent semiconductor devices or semiconductor device components are severed from one another, the conductive material in each via between the semiconductor devices is bisected. The semiconductor devices and components of the multichip assembly may have different sizes, as well as arrays of outer connectors with differing diameters and pitches. Either or both ends of each outer connector may be electrically connected to another aligned outer connector or contact area of another semiconductor device or component. Assembly in this manner provides a low-profile stacked assembly.
Abstract:
A semiconductor device including a package body, a substrate contained within the package body and having a first side and an opposite second side, a first chip mounted on the first side of the substrate and within the package body, a second chip mounted on the second side of the substrate and within the package body and a plurality of leads each including an inner lead portion contained within the package body and an outer lead portion located outside the package body wherein each inner lead portion includes first and second bends to define a step configuration and wherein a distal end of each inner lead portion is mounted to the second side of the substrate.
Abstract:
Disclosed is a method of forming a support structure for supporting multiple dice and resulting structure. The support structure has a cavity with an upper die support surface, sidewalls providing the upper die support surface, and a lower die support bottom surface connected with the sidewalls. The support structure can be formed of a plurality of layers. A first semiconductor die is secured on the lower die support surface and a second semiconductor die is secured to the upper die support surface. An aperture can be formed from the structure bottom surface to the cavity to facilitate electrical connections between the first die and electrical contact areas on the support structure. An encapsulating material is formed around the dice, the electrical connections, and the vacant cavity space to form a packaged semiconductor device.
Abstract:
After a copper diffusion preventing film 4 is formed on a copper pad 1, a barrier metal including a titanium film 5, a nickel film 6, and a palladium film 7 is formed on the copper diffusion preventing film 4. The copper diffusion preventing film formed on the copper pad suppresses diffusion of copper. Even when a solder bump is formed on the copper pad, diffusion of tin in the solder and copper is suppressed. This prevents formation of an intermetallic compound between copper and tin, so no interface de-adhesion or delamination occurs and a highly reliable connection is obtained. This structure can be realized by a simple fabrication process unlike a method of forming a thick barrier metal by electroplating. In this invention, high shear strength can be ensured by connecting a solder bump, gold wire, or gold bump to a copper pad without increasing the number of fabrication steps.
Abstract:
A semiconductor package and method for fabricating the same is disclosed. In one embodiment, the semiconductor package includes a circuit board, at least two semiconductor chips, electric connection means, an encapsulant, and a plurality of conductive balls. The circuit board has a resin layer and a circuit pattern. The resin layer is provided with an opening at its center portion. The circuit pattern is formed on at least one of upper and lower surfaces of the resin layer and includes one or more bond fingers and ball lands exposed to the outside. The semiconductor chips have a plurality of input/output pads on an active surface thereof. The semiconductor chips are stacked at a position of the opening of the circuit board, with at least one of the chips being within the opening. Alternatively, both chips are in the opening. The electric connection means connects the input/output pads of the semiconductor chips to the bond fingers of the circuit board. The encapsulant surrounds the semiconductor chips so as to protect the chips from the external environment. The conductive balls are fusion-bonded on the ball lands of the circuit board.
Abstract:
An optical package structure (2) includes a cover (21) with a lens part (22), and a base member (23) which combines with the cover to define a closed space in which to package optical components. The base member has a bottom panel (232) and a substrate (234). A plurality of solder pads (231, 237) is provided on a top and bottom surfaces (2321, 2342) of the bottom panel and of the substrate. The solder pads on the top surface electrically connect with the optical components. A plurality of inner conductive traces (236, 238) is provided through the bottom panel and the substrate which electrically connect the solder pads on the top surface of the bottom panel with corresponding solder pads on the bottom surface of the substrate via printed circuits (235) on the substrate. Thus, an external electrical connection of the optical components is attained without wires and electrical pins.
Abstract:
A semiconductor device of the present invention includes the multi-stacked structure having the bottom semiconductor package with BGA or PGA terminals so that the total number of terminals of the semiconductor device can be increased without increasing the mounting area. In particular, the semiconductor device includes a first semiconductor package having an upper and lower surfaces. The first semiconductor package has a plurality of land terminals on the lower surface. The semiconductor device also includes a second semiconductor package having a planar configuration substantially the same as that of the first semiconductor package, which is provided on the upper surface of the first semiconductor package. The second semiconductor package has a plurality of lead terminals extending from a side surface of the second semiconductor package.
Abstract:
A semiconductor device substrate has fine terminals with a small pitch and is able to be easily produced at a low cost without using a special process. A mounting terminal has a pyramidal shape and extending between a front surface and a back surface of a silicon substrate. An end of the mounting terminal protrudes from the back surface of the silicon substrate. A wiring layer is formed on the front surface of the silicon substrate. The wiring layer includes a conductive layer that is electrically connected to the mounting terminal.
Abstract:
The invention relates to an electrical arrangement having a mount device with at least one conductor track, having an electrical component that is mounted on the mount device and is electrically connected to the at least one conductor track. The arrangement further includes a housing base plate on which the mount device is mounted and through which at least one contact-making pin extends, with the at least one contact-making pin being electrically connected to the at least one conductor track. In order to improve the frequency response of the arrangement, the invention provides for the at least one contact-making pin to touch the mount device and, in the area of the touching point, for a connection without any bonding wire to be provided between the at least one contact-making pin and the at least one conductor track on the mount device.