摘要:
A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material; and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.
摘要:
A carbon-polymer complex is provided and includes a porous carbon material and a binder, wherein the porous carbon material includes a material obtained from carbonization of a raw material including rice husk, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.5 or greater, wherein the porous carbon material includes mesopores having pore sizes from 2 nm to 50 nm and obtained from the alkali treatment of the raw material after carbonization, the porous carbon material further includes macropores and micropores.
摘要:
A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material; and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.
摘要:
A porous carbon material is provided. The porous carbon material having a value of specific surface area of at least 10 m2/g as measured by a nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by a BJH method and a MP method, and a R value of 1.5 or greater, wherein the R value is expressed as R=B/A, wherein A is an intensity at an intersection between a baseline of a diffraction peak of a (002) plane as obtained based on powdery X-ray diffractometry of the porous carbon material and a perpendicular line downwardly drawn from the diffraction peak of the (002) plane, and wherein B is an intensity of the diffraction peak of the (002) plane.
摘要:
A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material; and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.
摘要:
A sheet-shaped member is provided and includes a porous carbon material including a material obtained from carbonization of a raw material including rice husk, the raw material having a silicon content of at least 5 wt %, the raw material is heat treated before carbonization, and the raw material is treated by an alkali treatment after carbonization to reduce the silicon content, the porous carbon material having a specific surface area of at least 10 m2/g as measured by the nitrogen BET method, a pore volume of at least 0.1 cm3/g as measured by the BJH method and MP method, and an R value of 1.5 or greater, wherein the porous carbon material includes mesopores having pore sizes from 2 nm to 50 nm and obtained from the alkali treatment of the raw material after carbonization, the porous carbon material further includes macropores and micropores, the R value is expressed as R=B/A, the A referring to an intensity at an intersection between the baseline of a diffraction peak of the (002) plane as obtained based on powdery X-ray diffractometry of the porous carbon material and a perpendicular line downwardly drawn from the diffraction peak of the (002) plane, and the B referring to the intensity of the diffraction peak of the (002) plane.
摘要:
A porous carbon material composite formed of a porous carbon material and a functional material and equipped with high functionality. The porous carbon material composite is formed of (A) a porous carbon material obtainable from a plant-derived material having a silicon (Si) content of 5 wt % or higher as a raw material, said porous carbon material having a silicon (Si) content of 1 wt % or lower, and (B) a functional material adhered on the porous carbon material, and has a specific surface area of 10 m2/g or greater as determined by the nitrogen BET method and a pore volume of 0.1 cm3/g or greater as determined by the BJH method and MP method.