Abstract:
Systems and methods for optically determining casing collar and/or corrosion locations within boreholes, using the diffraction effect of Faraday crystals through which depolarized continuous light is transmitted within optical fibers.
Abstract:
Single fiber optical telemetry systems and methods are disclosed. The methods and systems facilitate input and output via a single fiber optic interface. The optical telemetry systems and methods also facilitate faster data transmission rates between surface and downhole equipment in oilfield applications.
Abstract:
Single fiber optical telemetry systems and methods are disclosed. The methods and systems facilitate input and output via a single fiber optic interface. The optical telemetry systems and methods also facilitate faster data transmission rates between surface and downhole equipment in oilfield applications.
Abstract:
A system and method for optically determining the rate and/or direction of fluid flow in a conduit within wellholes, using the diffraction effect of Faraday crystals through which continuous light is transmitted within optical fibers.
Abstract:
Subterranean oilfield sensor systems and methods are provided. The subterranean oilfield sensor systems and methods facilitate downhole monitoring and high data transmission rates with power provided to at least one downhole device by a light source at the surface. In one embodiment, a system includes uphole light source, a downhole sensor, a photonic power converter at the downhole sensor, an optical fiber extending between the uphole light source and the photonic power converter, and downhole sensor electronics powered by the photonic power converter. The photonic power converter is contained in a high temperature resistant package. For example, the high temperature resistant package and photonic power converter may operate at temperatures of greater than approximately 100° C.
Abstract:
A multiple sensor fiber optic sensing system includes an optical fiber having at least first fiber optic sensors and second fiber optic sensors deployed along its length. In response to an interrogating pulse, the first fiber optic sensors generate responses in a first optical spectrum window, and the second fiber optic sensors generate responses in a second, different optical spectrum window. The responses in the first optical spectrum window are measured in a first optical spectrum channel, and the responses in the second optical spectrum window are measure in a second, different optical spectrum channel and provide simultaneous indications of one or more parameters, such as temperature and pressure, in the environment in which the sensors are deployed.
Abstract:
Configurations for stationary imaging systems are provided. The configurations may include combinations of various types of distributed sources of X-ray radiation, which generally include addressable emitter elements which may be triggered for emission in desired sequences and combinations. The sources may be ring-like, partial ring-like, or line-like (typically along a Z-axis), and so forth. Combinations of these are envisaged. Corresponding detectors may also be full ring detectors or partial ring detectors associated with the sources to provide sufficient coverage of imaging volumes and to provide the desired mathematical completeness of the collected data.
Abstract:
There is provided a field emitter device formed over a semiconductor substrate. The field emitter device includes at least one field emitter tip disposed over the substrate, and a conducting gate electrode layer disposed over the substrate. The field emitter device also includes a protective electronic component disposed over and integral to the substrate and electrically connecting the conducting gate electrode layer to the substrate such that if the conducting gate electrode layer experiences a voltage greater than a breakdown voltage of the field emitter device, the protective electronic component conducts current between the conducting gate electrode layer and the substrate.
Abstract:
Methods and apparatus for creating a velocity profile of a formation surrounding a borehole by checkshot measurements while moving the tool along the borehole. A conveyance and a sensor section are configured to move the sensor section in the borehole. At least one receiver is configured to detect signals generated at or near the surface while the sensor section is moving in the borehole.
Abstract:
A focal track region of an x-ray anode in an example is electrochemically etched. In a further example, an x-ray anode comprises a thermally-compliant focal track region for impingement of electrons from an x-ray cathode to create an x-ray source. The thermally-compliant focal track region comprises a pattern of discrete relative expanses and gaps.