摘要:
A multi-piece food product (10) comprising a plurality of strands (12A-12K) that are extruded and aggregated to form an aesthetically pleasing food product is provided. A formulation used to make each of the strands (12A-12K) includes a mixture comprising at least 20% sweetener, at least 15% starchy material, and at least 1% fruit by weight based a total dry weight of the mixture to yield a starch-based confectionary food product. One process for forming the multi-piece food product (10) includes extruding a food stream from a slurry, dividing the food stream into three separate food streams (24A, 24B), injecting color, flavor, and ascorbic acid into the food streams (24A, 24B), conveying the food streams (24A, 24B) into a former (26) and extruding the strands (12A-12K) therefrom, forming the strands (12A, 12B) into an aggregate food mass (31), cooling the food mass (31), and cutting the food mass (31) into individual portions.
摘要:
Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
摘要:
The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads. In addition, these pads can be designed to tune the coefficient of friction by surface engineering, through the addition of solid lubricants, and creating low shear integral pads having multiple layers of polymeric material which form an interface parallel to the polishing surface. The pads can also have controlled porosity, embedded abrasive, novel grooves on the polishing surface, for slurry transport, which are produced in situ, and a transparent region for endpoint detection.
摘要:
The present invention provides a composite polishing pad, comprising. In an advantageous embodiment, the composite polishing pad includes a polishing pad member comprising a material having a predetermined hardness and an annular support member underlying a periphery of the polishing pad member, the annular support member having a hardness less than the predetermined hardness of the polishing pad member.
摘要:
The present invention provides a process for forming a sub-micron p-type metal oxide semiconductor (PMOS) structure on a semiconductor substrate. The process includes forming a gate oxide on the semiconductor substrate, forming a gate layer on the gate oxide by depositing a first gate layer on the gate oxide at a first deposition rate and depositing a second gate layer on the first layer at a second deposition rate to provide an improved stress accommodation within the gate structure. The process further includes forming a silicide dopant barrier on the gate. Due to the presence of the improved stress accommodation in the gate, the integrity of the silicide dopant barrier is substantially enhanced. This increased silicide integrity prevents significant damage to the silicide dopant barrier layer during subsequent fabrication processes. As such, the dopant barrier is able to provide the intended degree of resistance to dopant penetration, for example boron, during the formation of source and drain regions adjacent the gate structure.
摘要:
The present invention provides a non-contact method for determining whether a contaminant is present in a semiconductor wafer having a substrate/dielectric interface formed thereon. in one advantageous embodiment, the method comprises field inducing a junction in equilibrium inversion in the semiconductor wafer device. A conventional corona source may be used to induce the junction to equilibrium inversion. This particular embodiment further includes forming a contaminant junction near the substrate/dielectric interface when the contaminant is present in the semiconductor wafer by adding charge and pulsing the junction out of equilibrium. A surface voltage measurement, which may be taken with a Kelvin probe, is obtained by measuring a change in a surface voltage as a function of time. The method further includes determining whether the contaminant is present in the semiconductor wafer from the change in the surface voltage. When the contaminant is present in the device, the change in the surface voltage is negligible. This negligible change is in stark contrast to the change in surface voltage that occurs in a non-contaminated device. The data obtained from these surface voltages can be plotted with conventional devices to yield the change in surface voltage with respect to time.
摘要:
This invention includes a novel synthesis of a three-step process of growing, depositing and growing Si02 under low pressure, e.g., 0.2-10 Torr, to generate high quality, robust and reliable gate oxides for sub 0.5 micron technologies. The first layer, 1.0-3.0 nm is thermally grown for passivation of the Si-semiconductor surface. The second deposited layer 1.0-5.0 nm forms an interface with the first grown layer. During the third step of the synthesis densification of the deposited oxide layers occurs with a simultaneous removal of the interface traps at the interface and growth of a stress-modulated Si02 occurs at the Si/first grown layer interface in the presence of a stress-accommodating interface layer resulting in a planar and stress-reduced Si/SiO2 interface. The entire synthesis is done under low-pressure (e.g., 0.2-10 Torr) for slowing down the oxidation kinetics to achieve ultrathin sublayers and may be done in a single low-pressure furnace by clustering all three steps. For light nitrogen-incorporation (
摘要:
In an integrated circuit, an opening (e.g., via or window) is filled with an Al-based plug which has essentially a orientation and comprises at most three grains. These characteristics are achieved by first depositing a texture control Ti layer having substantially a (002) basal plane orientation followed by at least three Al-based sublayers. The grain sizes and deposition conditions are controlled in such a way that during deposition of the third sublayer, the microstructure of the plug adjusts itself to produce a single grain (or at most three).