Abstract:
A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.
Abstract translation:一种可燃气体传感器,其使用电阻加热的贵金属涂覆的微加工多晶硅丝来量热检测可燃气体的存在和浓度。 到目前为止测试的长丝是2μm厚的10μm宽×100,250,500或1000μm长的多晶Si; 有些被外涂了0.25μm厚的保护性CVD Si 3 N 4层。 通过CVD将Pt催化Pt薄膜从前体Pt(acac)2沉积到电阻加热至约500℃的微丝上; Pt仅在热丝上沉积。 使用恒电阻模式反馈电路,Pt涂层长丝在约 在80/20 N2 / O2混合物中,在保持恒定电阻(温度)所需的电源电流变化为100 ppm和1%之间,300°C(35 mW输入功率)线性响应。 也可以使用其它催化剂。
Abstract:
A device for quantitatively measuring adherence of thin films provides a first substrate having an upper surface and a second substrate having a surface coplanar therewith. The second substrate is spaced on all sides from the first substrate by a cavity. The thin film is suspended over the cavity and adhered to the surfaces of the two substrates. A characteristic length of the area of the surface of the second substrate to which the film is adhered is made small relative to the characteristic length of the cavity. A pressure differential is applied across the thickness of the film such that the film debonds from the surface of the second substrate. Mechanical characteristics of the debonding of the film are observed and measured. The characteristics are thereafter related to provide a quantitative measurement of adherence of the thin film to the second substrate. A measurement of relative adherence between different films is obtained by testing a multilayered film structure. Other layers of various materials may be used to define a smaller area of adherence to which the film may be adhered.
Abstract:
Logic elements such as inverters, NAND-gates and NOR-gates that include charge-flow transistors and systems that include such logic elements, and oscillators that include such logic elements. A basic logic element includes a charge-flow transistor and a load element, in combination, the load element being connected to either the source or the drain of the charge-flow transistor.
Abstract:
An oscillator having a logic element that includes a charge-flow transistor and a load element, in combination, and that further includes a Schmitt trigger or the like connected to receive as input thereto an output from the logic element and to provide an output that is fed back as input to the logic element.
Abstract:
A light processor (such as a spectrometer) providing wavelength equalization for a sample pathway and a reference pathway by actuation of a light amplitude modulator. A chemometric processor including a light amplitude modulator capable of performing chemical analysis by applying weights to wavelengths of light, thereby reducing the need for electronic post processing.
Abstract:
A programmable MEMS diffractive optical processor having actuatable grating elements that are optically adjacent and supported at points intermediate the ends of the grating elements. The grating elements are maintained substantially flat during actuation of the grating elements.
Abstract:
The invention overcomes limitations of conventional power and thermodynamic sources by with micromachinery components that enable production of significant power and efficient operation of thermodynamic systems in the millimeter and micron regime to meet the efficiency, mobility, modularity, weight, and cost requirements of many modern applications. A micromachine of the invention has a rotor disk journalled for rotation in a stationary structure by a journal bearing. A plurality of radial flow rotor blades, substantially untapered in height, are disposed on a first rotor disk face, and an electrically conducting region is disposed on a rotor disk face. A plurality of stator electrodes that are electrically interconnected to define multiple electrical stator phases are disposed on a wall of the stationary structure located opposite the electrically conducting region of the rotor disk. A first orifice in the stationary structure provides fluidic communication with the first rotor disk face at a location radially central of the rotor blades, and a second orifice in the stationary structure provides fluidic communication with the first rotor disk face at a location radially peripheral of the rotor blades. An electrical connection to the stator electrode configuration is provided for stator electrode excitation and for power transfer with the stator electrode configuration as the rotor disk rotates.
Abstract:
There is provided an electrostatically-controllable actuator having a stationary electrode, with an actuating element separated from the stationary electrode by an actuation gap. The actuating element includes a mechanically constrained support region, a deflection region free to be deflected through the actuation gap, and a conducting actuation region extending from about the support region to the deflection region. A commonality in area between the actuation region and the stationary electrode is selected to produce controlled and stable displacement of the deflection region over a displacement range, e.g., extending to a specified point in the actuation gap, when an actuation voltage is applied between the actuation region and the stationary electrode. This range of stable displacement, which can be stable bending, can extend to a point greater than about ⅓ of the actuation gap, or even through the full actuation gap. As a result, the invention overcomes the limitation of ⅓ gap actuation of conventional electrostatic actuation configurations.
Abstract:
Released film structures are employed in measuring the mechanical properties of the film material. By measuring the deformation of thin film structures held under intrinsic tensile stress and then released, these mechanical properties can be accurately measured.
Abstract:
A charge-flow transistor having a gapped gate electrode and a thin-film sensor material in the gap, which sensor material is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from the bulk conductance thereof. The charge-flow transistor is shown as part of an instrument operable to measure said property.