摘要:
A method for removing NOX from an oxygen-rich exhaust flow produced by a combustion source that is combusting a lean mixture of air and fuel may include passing the oxygen-rich exhaust flow through an exhaust aftertreatment system that includes a NOX oxidation catalyst that includes perovskite oxide particles, a NOX storage catalyst, and a NOX reduction catalyst.
摘要:
One embodiment of the invention may include a product comprising a catalyst combination comprising a perovskite catalyst and a second catalyst that is not a perovskite catalyst.
摘要:
An after-treatment system architecture and method for oxidizing the nitric oxide component of a gas stream are disclosed. One embodiment may include treatment of a gas stream that includes NOx with a perovskite catalyst of the general formula ABO3 or a modified formula of ABO3 wherein a small amount of a promoter material is substituted for a portion of at least one of element A or element B in a catalytic oxidation reaction to oxidize nitric oxide in the gas stream.
摘要:
One embodiment of the invention may include a method comprising providing a product comprising a substrate comprising a perovskite catalyst, NOx stored in or on the substrate and particulate matter in or on the substrate; releasing at least some of the stored NOx and oxidizing the released NOx to form NO2, and reacting the NO2 with carbon in the particulate matter to form at least one of CO or CO2.
摘要:
One embodiment of the invention may include a product comprising a catalyst combination comprising a perovskite catalyst and a second catalyst that is not a perovskite catalyst.
摘要:
Ammonia in a gas stream comprising oxygen and nitrogen may be effectively completely oxidized to a mixture of NO and NO2 for further processing to nitric acid. The gas stream is flowed over fine particles of La1-xSrxCoO3 and/or La1-xSrxMnO3, and/or La1-xSrxFeO3 where x=about 0.1, 0.2, or 0.3. The particles are supported as catalyst layers on gas stream-contacting surfaces of a flow-through catalyzed oxidation reactor. These relatively inexpensive perovskite-type materials may be used to promote oxidation of ammonia at temperatures below about 450° C. to about 500° C. to selectively produce a mixture of NO and NO2. This mixture is suitable for further oxidation to NO2 for adsorption into water to make nitric acid.
摘要:
One embodiment of the invention may include a method comprising providing a product comprising a substrate comprising a perovskite catalyst, NOx stored in or on the substrate and particulate matter in or on the substrate; releasing at least some of the stored NOx and oxidizing the released NOx to form NO2, and reacting the NO2 with carbon in the particulate matter to form at least one of CO or CO2.
摘要:
A method for removing NOX from an oxygen-rich exhaust flow produced by a combustion source that is combusting a lean mixture of air and fuel may include passing the oxygen-rich exhaust flow through an exhaust aftertreatment system that includes a NOX oxidation catalyst that includes perovskite oxide particles, a NOX storage catalyst, and a NOX reduction catalyst.
摘要:
An on-board diagnostics system and method are disclosed for a vehicle having an engine and an exhaust system. The system includes a modified selective catalytic reduction catalyst coupled to the engine via the exhaust system, where the modified selective catalytic reduction catalyst includes oxygen storage components. An upstream oxygen sensor is disposed in the exhaust pipe upstream of the modified selective catalytic reduction catalyst and a downstream oxygen sensor is disposed in the exhaust pipe downstream from the modified selective catalytic reduction catalyst. An engine control module receives data from the upstream and downstream oxygen sensors and determines a lifespan of the modified selective catalytic reduction catalyst based upon the data from the upstream and downstream oxygen sensors.