摘要:
Following a cold start of a hydrocarbon-fueled engine operated in a lean-burn-combustion mode, several seconds and minutes may be required for the exhaust gas stream to heat exhaust treatment devices in the exhaust system and conduit to their effective operating temperatures. The warm-up period may be particularly long for a NOx reduction catalyst (SCR) located downstream in the exhaust flow system. Accordingly, a bed of absorbent material, such as a suitably sized bed of alumina particles, located upstream of the SCR, is used to temporarily absorb water and NOx from a relatively cold exhaust until the exhaust has suitably heated the SCR to its operating temperature. Then, the warmed exhaust will remove the water and NOx from their temporary storage material and carry them to the reduction catalyst.
摘要:
An exhaust treatment system for an engine includes a selective catalyst reduction (SCR) treatment module that controls a valve and an air pump to deliver air to an SCR catalyst in response to the engine turning off. An SCR loading module controls the valve and the air pump to deliver air to an exhaust manifold and controls a dosing system to deliver a dosing agent upstream of the SCR catalyst when a temperature of the SCR catalyst is less than a temperature threshold and the SCR catalyst is not saturated with ammonia.
摘要:
An exhaust gas treatment system for an internal combustion engine is provided, including an exhaust gas conduit, an oxidation catalyst (“OC”) device, an electrically heated catalyst (“EHC”) device, a selective catalytic reduction (“SCR”) device, and a control module. The OC device is in fluid communication with the exhaust gas conduit. The OC device adsorbs hydrocarbons and is selectively activated to induce oxidation of the hydrocarbons in the exhaust gas. The EHC device is in fluid communication with the exhaust gas conduit and is configured to receive the exhaust gas. The EHC device is located within the OC device and is selectively activated to produce heat and induce further oxidation of the exhaust gas. The EHC device has an oxidation catalyst compound disposed thereon for converting nitrogen oxide (“NO”) to nitrogen dioxide (“NO2”).
摘要:
A method for monitoring performance of a passive selective catalytic reduction system includes operating the internal combustion engine in a preconditioning mode. Subsequent to the preconditioning, an air/fuel excursion is introduced into the exhaust gas feedstream and a signal output from a sensor monitoring the exhaust gas feedstream in the selective catalytic reduction system during the air/fuel excursion is monitored. An operating effectiveness is determined for the selective catalytic reduction system correlated to the signal output from the sensor monitoring the exhaust gas feedstream.
摘要:
A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
摘要:
A method for catalytic oxidation of NO to NO2 in the sulfur-containing exhaust gases of lean-burn engines, such as diesel engines is disclosed. The catalysts are oxide perovskites with a credible likelihood of being sulfur-tolerant.
摘要:
One embodiment of the invention may include a method comprising providing a product comprising a substrate comprising a perovskite catalyst, NOx stored in or on the substrate and particulate matter in or on the substrate; releasing at least some of the stored NOx and oxidizing the released NOx to form NO2, and reacting the NO2 with carbon in the particulate matter to form at least one of CO or CO2.
摘要:
A method for removing NOX from an oxygen-rich exhaust flow produced by a combustion source that is combusting a lean mixture of air and fuel may include passing the oxygen-rich exhaust flow through an exhaust aftertreatment system that includes a NOX oxidation catalyst that includes perovskite oxide particles, a NOX storage catalyst, and a NOX reduction catalyst.
摘要:
One embodiment of the invention includes a method of treating a gas stream comprising flowing the gas stream over a hydrocarbon reduction and NOx reduction catalyst first, and thereafter flowing the gas over a perovskite and NOx trap material for NOx oxidation and storage. In one embodiment, the hydrocarbon reduction and NOx reduction catalyst may include palladium. In one embodiment, the perovskite catalyst may have the general formula ABO3, AA′BO3, ABB′O3, or AA′BB′O3. The perovskite catalyst may be the only catalyst or a second non-perovskite catalyst may include at least one of palladium, platinum, rhodium, ruthenium or a catalyst system including one or more of the same or alloys thereof. In one embodiment, the NOx trap material may include at least one of alkali metals, alkaline earth metals such as barium, calcium, potassium, or sodium.
摘要:
Precursor cations of A and B elements of an ABO3 perovskite in aqueous solution are formed as an ionic complex gel with citric acid or other suitable polybasic carboxylic acid. The aqueous gel is coated onto a desired catalyst substrate and calcined to form, in-situ, particles of the crystalline perovskite as, for example, an oxidation catalyst on the substrate. In one embodiment, a perovskite catalyst such as LaCoO3 is formed on catalyst supporting cell walls of an extruded ceramic monolith for oxidation of NO in the exhaust gas of a lean burn vehicle engine.