摘要:
Methods are provided for forming an integrated circuit. In an embodiment, the method includes forming a sacrificial mandrel overlying a base substrate. Sidewall spacers are formed adjacent sidewalls of the sacrificial mandrel. The sidewall spacers have a lower portion that is proximal to the base substrate, and the lower portion has a substantially perpendicular outer surface relative to the base substrate. The sidewall spacers also have an upper portion that is spaced from the base substrate. The upper portion has a sloped outer surface. A first dielectric layer is formed overlying the base substrate and is conformal to at least a portion of the upper portion of the sidewall spacers. The upper portion of the sidewall spacers is removed after forming the first dielectric layer to form a recess having a re-entrant profile in the first dielectric layer. The re-entrant profile of the recess is straightened.
摘要:
A self-aligned source/drain contact formation process without spacer or cap loss is described. Embodiments include providing two gate stacks, each having spacers on opposite sides, and an interlayer dielectric (ILD) over the two gate stacks and in a space therebetween, forming a vertical contact opening within the ILD between the two gate stacks, and laterally removing ILD between the two gate stacks from the vertical contact opening toward the spacers, to form a contact hole.
摘要:
One method includes forming a sacrificial gate structure above a substrate, forming a first sidewall spacer adjacent a sacrificial gate electrode, removing a portion of the first sidewall spacer to expose a portion of the sidewalls of the sacrificial gate electrode, and forming a liner layer on the exposed sidewalls of the sacrificial gate electrode and above a residual portion of the first sidewall spacer. The method further includes forming a first layer of insulating material above the liner layer, forming a second sidewall spacer above the first layer of insulating material and adjacent the liner layer, performing an etching process to remove the second sidewall spacer and sacrificial gate cap layer to expose an upper surface of the sacrificial gate electrode, removing the sacrificial gate electrode to define a gate cavity at least partially defined laterally by the liner layer, and forming a replacement gate structure in the cavity.
摘要:
A method for recessing and capping metal gate structures is disclosed. Embodiments include: forming a dummy gate electrode on a substrate; forming a hard mask over the dummy gate electrode; forming spacers on opposite sides of the dummy gate electrode and the hard mask; forming an interlayer dielectric (ILD) over the substrate adjacent the spacers; forming a first trench in the ILD down to the dummy gate electrode; removing the dummy gate electrode to form a second trench below the first trench; forming a metal gate structure in the first and second trenches; and forming a gate cap over the metal gate structure.
摘要:
Disclosed herein are various methods of forming isolation structures on FinFETs and other semiconductor devices, and the resulting devices that have such isolation structures. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define a fin for a FinFET device, forming a layer of insulating material in the trenches, wherein the layer of insulating material covers a lower portion of the fin but not an upper portion of the fin, forming a protective material on the upper portion of the fin, and performing a heating process in an oxidizing ambient to form a thermal oxide region on the covered lower portion of the fin.
摘要:
A method for fabricating an integrated circuit includes forming a temporary gate structure on a semiconductor substrate. The temporary gate structure includes a temporary gate material disposed between two spacer structures. The method further includes forming a first directional silicon nitride liner overlying the temporary gate structure and the semiconductor substrate, etching the first directional silicon nitride liner overlying the temporary gate structure and the temporary gate material to form a trench between the spacer structures, while leaving the directional silicon nitride liner overlying the semiconductor substrate in place, and forming a replacement metal gate structure in the trench. An integrated circuit includes a replacement metal gate structure overlying a semiconductor substrate, a silicide region overlying the semiconductor substrate and positioned adjacent the replacement gate structure; a directional silicon nitride liner overlying a portion of the replacement gate structure; and a contact plug in electrical communication with the silicide region.
摘要:
One illustrative method disclosed herein involves forming a contact opening in a layer of insulating material, forming a layer of conductive material above the layer of insulating material that overfills the contact opening, performing at least one chemical mechanical polishing process to remove portions of the conductive material positioned outside of the contact opening and thereby define a conductive contact positioned in the contact opening and, after performing the chemical mechanical polishing process, performing a selective metal deposition process to selectively form additional metal material on an upper surface of the conductive contact.
摘要:
One method disclosed herein includes forming first, second and third gate stacks, wherein one of the gate stacks is an isolation stack positioned above an isolation structure and each of the gate stacks is comprised of three layers of hard mask material positioned above a layer of gate electrode material. The method also involves forming sidewall spacers proximate the second gate stack while the first and isolation gate stacks are masked, forming sidewall spacers proximate the first gate stack while the second and isolation gate stacks are masked, forming a polish stop layer between the plurality of gate stacks, performing another etching process on an etch stop layer, a layer of spacer material, and the second layer of hard mask material positioned above or proximate the isolation gate stack and performing a chemical mechanical polishing process to remove material positioned above an upper surface of the polish stop layer.
摘要:
One illustrative method disclosed herein includes performing at least one etching process on a semiconducting substrate to form a plurality of trenches and a plurality of fins for the FinFET device in the substrate, forming a first layer of insulating material in the trenches, wherein an upper surface of the first layer of insulating material is below an upper surface of the substrate, forming an isolation layer within the trenches above the first layer of insulating material, wherein the isolation layer has an upper surface that is below the upper surface of the substrate, forming a second layer of insulating material above the isolation layer, wherein the second layer of insulating material has an upper surface that is below the upper surface of the substrate, and forming a gate electrode structure above the second layer of insulating material.
摘要:
Gate to contact shorts are reduced by forming dielectric caps in replaced gate structures. Embodiments include forming a replaced gate structure on a substrate, the replaced gate structure including an ILD having a cavity, a first metal on a top surface of the ILD and lining the cavity, and a second metal on the first metal and filling the cavity, planarizing the first and second metals, forming an oxide on the second metal, removing the oxide, recessing the first and second metals in the cavity, forming a recess, and filling the recess with a dielectric material. Embodiments further include dielectric caps having vertical sidewalls, a trapezoidal shape, a T-shape, or a Y-shape.