ELECTRICAL FUSE STRUCTURE FOR HIGHER POST-PROGRAMMING RESISTANCE
    1.
    发明申请
    ELECTRICAL FUSE STRUCTURE FOR HIGHER POST-PROGRAMMING RESISTANCE 失效
    用于更高后编程电阻的电熔丝结构

    公开(公告)号:US20080217733A1

    公开(公告)日:2008-09-11

    申请号:US11683071

    申请日:2007-03-07

    IPC分类号: H01L23/58

    摘要: The present invention provides an electrical fuse structure for achieving a post-programming resistance distribution with higher resistance values and to enhance the reliability of electrical fuse programming. A partly doped electrical fuse structure with undoped semiconductor material in the cathode combined with P-doped semiconductor material in the fuselink and anode is disclosed and the data supporting the superior performance of the disclosed electrical fuse is shown.

    摘要翻译: 本发明提供一种用于实现具有更高电阻值的后编程电阻分布并提高电熔丝编程的可靠性的电熔丝结构。 公开了在阴极中与掺杂了P掺杂的半导体材料结合在阴极中的未掺杂半导体材料的部分掺杂的电熔丝结构,并且示出了所公开的电熔丝的优异性能的数据。

    Metal to Metal Low-K Antifuse
    7.
    发明申请
    Metal to Metal Low-K Antifuse 审中-公开
    金属与金属Low-K防腐剂

    公开(公告)号:US20080157270A1

    公开(公告)日:2008-07-03

    申请号:US11618757

    申请日:2006-12-30

    IPC分类号: H01L29/00

    摘要: The embodiments of the invention generally relate to fuse and anti-fuse structures and include a copper conductor positioned within a substrate and a metal cap on the first conductor. A low-k dielectric is on the substrate and the metal cap. A tantalum nitride resistor is on the dielectric, and the resistor is positioned above the metal cap such that an antifuse element region of the dielectric is positioned between the resistor and the metal cap. The antifuse element region of the dielectric is adapted to change resistance values by application of a voltage difference between the resistor and the copper conductor/metal cap. The antifuse element region has a first higher resistance (more closely matching an insulator) before application of the voltage and a second lower resistance (more closely matching a conductor) after application of such voltage. In one embodiment herein the voltage can be supplemented by heating through application of voltage through the first conductor which helps change the resistance of the antifuse element region.

    摘要翻译: 本发明的实施例一般涉及熔丝和反熔丝结构,并且包括定位在基板内的铜导体和第一导体上的金属盖。 低k电介质位于基板和金属盖上。 电介质上的氮化钽电阻器,电阻器位于金属帽的上方,使得电介质的反熔丝元件区域位于电阻器和金属帽之间。 电介质的反熔丝元件区域适于通过施加电阻器和铜导体/金属帽之间的电压差来改变电阻值。 在施加电压之后,反熔丝元件区域具有第一高电阻(更紧密地匹配绝缘体)和施加电压之后的第二较低电阻(更接近地匹配导体)。 在本文的一个实施例中,可以通过施加通过第一导体的电压进行加热来补充电压,这有助于改变反熔丝元件区域的电阻。

    ELECTRICAL ANTIFUSE WITH INTEGRATED SENSOR
    8.
    发明申请
    ELECTRICAL ANTIFUSE WITH INTEGRATED SENSOR 有权
    集成传感器的电气防护

    公开(公告)号:US20080217658A1

    公开(公告)日:2008-09-11

    申请号:US11683075

    申请日:2007-03-07

    IPC分类号: H01L27/10 H01L29/00

    摘要: The present invention provides structures for antifuses that utilize electromigration for programming. By providing a portion of antifuse link with high resistance without conducting material and then by inducing electromigration of the conducting material into the antifuse link, the resistance of the antifuse structure is changed. By providing a terminal on the antifuse link, the change in the electrical properties of the antifuse link is detected and sensed. Also disclosed are an integrated antifuse with a built-in sensing device and a two dimensional array of integrated antifuses that can share programming transistors and sensing circuitry.

    摘要翻译: 本发明提供了利用电迁移进行编程的反熔丝的结构。 通过在没有导电材料的情况下提供具有高电阻的一部分反熔丝连接,然后通过将导电材料电迁移到反熔丝连接中,反熔丝结构的电阻改变。 通过在反熔丝链路上设置端子,检测和感测反熔丝连接的电特性的变化。 还公开了具有内置感测装置的集成反熔丝和可共享编程晶体管和感测电路的集成反熔丝的二维阵列。

    ELECTRICALLY PROGRAMMABLE FUSE WITH ASYMMETRIC STRUCTURE
    9.
    发明申请
    ELECTRICALLY PROGRAMMABLE FUSE WITH ASYMMETRIC STRUCTURE 审中-公开
    具有非对称结构的电气可编程保险丝

    公开(公告)号:US20070284693A1

    公开(公告)日:2007-12-13

    申请号:US11423181

    申请日:2006-06-09

    IPC分类号: H01L29/00

    摘要: An electrically programmable fuse is provided which includes a cathode, an anode, and a fuse link conductively connecting the cathode to the anode. The cathode, the anode and the fuse link each have a length in a direction of current between the anode and cathode. Each of the cathode, the anode and the fuse link also has a width in a direction transverse to the respective length. At a cathode junction where the cathode meets the fuse link, the width of the fuse link decreases substantially and abruptly relative to the width of the cathode. The width of the fuse link increases only gradually in a direction towards an anode junction where the fuse link meets the anode.

    摘要翻译: 提供了电可编程保险丝,其包括阴极,阳极和将阴极导电连接到阳极的熔断体。 阴极,阳极和熔断体在阳极和阴极之间的电流方向上具有长度。 阴极,阳极和熔丝链中的每一个也在横向于相应长度的方向上具有宽度。 在阴极与熔丝连接的阴极结处,熔丝链的宽度相对于阴极的宽度基本上急剧下降。 熔丝链的宽度仅在熔丝链接到阳极的阳极结的方向上逐渐增加。

    Single crystal fuse on air in bulk silicon
    10.
    发明授权
    Single crystal fuse on air in bulk silicon 有权
    单晶保险丝在散装硅中的空气中

    公开(公告)号:US07745855B2

    公开(公告)日:2010-06-29

    申请号:US11867268

    申请日:2007-10-04

    IPC分类号: H01L27/10

    摘要: An integrated eFUSE device is formed by forming a silicon “floating beam” on air, whereupon the fusible portion of the eFUSE device resides. This beam extends between two larger, supporting terminal structures. “Undercutting” techniques are employed whereby a structure is formed atop a buried layer, and that buried layer is removed by selective etching. Whereby a “floating” silicide eFUSE conductor is formed on a silicon beam structure. In its initial state, the eFUSE silicide is highly conductive, exhibiting low electrical resistance (the “unblown state of the eFUSE). When a sufficiently large current is passed through the eFUSE conductor, localized heating occurs. This heating causes electromigration of the silicide into the silicon beam (and into surrounding silicon, thereby diffusing the silicide and greatly increasing its electrical resistance. When the current source is removed, the silicide remains permanently in this diffused state, the “blown” state of the eFUSE.

    摘要翻译: 通过在空气中形成硅“浮动光束”形成集成eFUSE装置,于是eFUSE装置的可熔部分驻留。 该梁在两个较大的支撑端子结构之间延伸。 采用“底切”技术,由此在掩埋层顶部形成结构,并且通过选择性蚀刻去除掩埋层。 由此在硅梁结构上形成“浮动”硅化物eFUSE导体。 在其初始状态下,eFUSE硅化物具有高导电性,表现出低电阻(eFUSE的未吹出状态)。 当足够大的电流通过eFUSE导体时,发生局部加热。 这种加热导致硅化物的电迁移到硅束(并进入周围的硅,从而扩散硅化物,并大大增加其电阻。当电流源被去除时,硅化物永久地保持在这种扩散状态,“吹”状态 eFUSE。