摘要:
The present invention provides an electrical fuse structure for achieving a post-programming resistance distribution with higher resistance values and to enhance the reliability of electrical fuse programming. A partly doped electrical fuse structure with undoped semiconductor material in the cathode combined with P-doped semiconductor material in the fuselink and anode is disclosed and the data supporting the superior performance of the disclosed electrical fuse is shown.
摘要:
A programmable phase change material (PCM) structure includes a heater element formed at a transistor gate level of a semiconductor device, the heater element further including a pair of electrodes connected by a thin wire structure with respect to the electrodes, the heater element configured to receive programming current passed therethrough, a layer of phase change material disposed on top of a portion of the thin wire structure, and sensing circuitry configured to sense the resistance of the phase change material.
摘要:
A programmable phase change material (PCM) structure includes a heater element formed at a transistor gate level of a semiconductor device, the heater element further including a pair of electrodes connected by a thin wire structure with respect to the electrodes, the heater element configured to receive programming current passed therethrough, a layer of phase change material disposed on top of a portion of the thin wire structure, and sensing circuitry configured to sense the resistance of the phase change material.
摘要:
The present invention provides an electrical fuse structure for achieving a post-programming resistance distribution with higher resistance values and to enhance the reliability of electrical fuse programming. A partly doped electrical fuse structure with undoped semiconductor material in the cathode combined with P-doped semiconductor material in the fuselink and anode is disclosed and the data supporting the superior performance of the disclosed electrical fuse is shown.
摘要:
A programmable phase change material (PCM) structure includes a heater element formed at a transistor gate level of a semiconductor device, the heater element further including a pair of electrodes connected by a thin wire structure with respect to the electrodes, the heater element configured to receive programming current passed therethrough, a layer of phase change material disposed on top of a portion of the thin wire structure, and sensing circuitry configured to sense the resistance of the phase change material.
摘要:
A programmable phase change material (PCM) structure includes a heater element formed at a BEOL level of a semiconductor device, the BEOL level including a low-K dielectric material therein; a first via in electrical contact with a first end of the heater element and a second via in electrical contact with a second end of the heater element, thereby defining a programming current path which passes through the first via, the heater element, and the second via; a PCM element disposed above the heater element, the PCM element configured to be programmed between a lower resistance crystalline state and a higher resistance amorphous state through the use of programming currents through the heater element; and a third via in electrical contact with the PCM element, thereby defining a sense current path which passes through the third via, the PCM element, the heater element, and the second via.
摘要:
The embodiments of the invention generally relate to fuse and anti-fuse structures and include a copper conductor positioned within a substrate and a metal cap on the first conductor. A low-k dielectric is on the substrate and the metal cap. A tantalum nitride resistor is on the dielectric, and the resistor is positioned above the metal cap such that an antifuse element region of the dielectric is positioned between the resistor and the metal cap. The antifuse element region of the dielectric is adapted to change resistance values by application of a voltage difference between the resistor and the copper conductor/metal cap. The antifuse element region has a first higher resistance (more closely matching an insulator) before application of the voltage and a second lower resistance (more closely matching a conductor) after application of such voltage. In one embodiment herein the voltage can be supplemented by heating through application of voltage through the first conductor which helps change the resistance of the antifuse element region.
摘要:
The present invention provides structures for antifuses that utilize electromigration for programming. By providing a portion of antifuse link with high resistance without conducting material and then by inducing electromigration of the conducting material into the antifuse link, the resistance of the antifuse structure is changed. By providing a terminal on the antifuse link, the change in the electrical properties of the antifuse link is detected and sensed. Also disclosed are an integrated antifuse with a built-in sensing device and a two dimensional array of integrated antifuses that can share programming transistors and sensing circuitry.
摘要:
An electrically programmable fuse is provided which includes a cathode, an anode, and a fuse link conductively connecting the cathode to the anode. The cathode, the anode and the fuse link each have a length in a direction of current between the anode and cathode. Each of the cathode, the anode and the fuse link also has a width in a direction transverse to the respective length. At a cathode junction where the cathode meets the fuse link, the width of the fuse link decreases substantially and abruptly relative to the width of the cathode. The width of the fuse link increases only gradually in a direction towards an anode junction where the fuse link meets the anode.
摘要:
An integrated eFUSE device is formed by forming a silicon “floating beam” on air, whereupon the fusible portion of the eFUSE device resides. This beam extends between two larger, supporting terminal structures. “Undercutting” techniques are employed whereby a structure is formed atop a buried layer, and that buried layer is removed by selective etching. Whereby a “floating” silicide eFUSE conductor is formed on a silicon beam structure. In its initial state, the eFUSE silicide is highly conductive, exhibiting low electrical resistance (the “unblown state of the eFUSE). When a sufficiently large current is passed through the eFUSE conductor, localized heating occurs. This heating causes electromigration of the silicide into the silicon beam (and into surrounding silicon, thereby diffusing the silicide and greatly increasing its electrical resistance. When the current source is removed, the silicide remains permanently in this diffused state, the “blown” state of the eFUSE.