Abstract:
A technique for reducing soft errors in a dynamic circuit. For one embodiment, a dynamic circuit includes a dynamic logic gate having an output node at which a logical output value of the logic gate is detected. A keeper circuit coupled to the output node is configured to harden the dynamic circuit by increasing the critical charge at the output node.
Abstract:
A circuit includes first and second pull-up transistors having first and second drains, respectively, each coupled to separate voltage clamps. The gates of each of the two pull-up transistors are coupled to a clock signal line. The circuit further includes a shared pull-down transistor, the gate of which is coupled to the clock signal line. The drain of the shared pull-down transistor is coupled to the first drain via at least one pull-down transistor in series with the shared pull-down transistor. The drain of the shared pull-down transistor is also coupled to the second drain via at least one pull-down transistor in series with the shared pull-down transistor. This circuit may be found useful in multiplexing applications.
Abstract:
A low power memory bit line precharge scheme. A memory bit line is coupled to a first read precharge device. A second write precharge device is also coupled to the memory bit line and is to be enabled only in response to a memory write operation. The first read and second write precharge devices are sized such that their combined drive strength is sufficient to precharge the first memory bit line during a precharge period following a write operation.
Abstract:
A technique for reducing soft errors in a dynamic circuit. For one embodiment, a dynamic circuit includes a dynamic logic gate having an output node at which a logical output value of the logic gate is detected. A keeper circuit coupled to the output node is configured to harden the dynamic circuit by increasing the critical charge at the output node.
Abstract:
A complementary metal oxide semiconductor (CMOS) low-power, high speed logic circuit consisting of a cascaded chain of stages. The first stage is a pulsed domino logic circuit having one or more logic signal inputs for receiving data signals, and a timing input for receiving a clocking pulse that conditions the input pulse domino stage for evaluation during a brief window of time. The output of the pulsed domino circuit is connected to a chain of series-connected skewed static logic gates, each having the channel sizes of its pull-up and pull-down transistors ratioed to a produce, from gate-to-gate in the static logic chain, alternating fast high-to-low and low-to-high transitions for the information carrying leading edge of said input data signals. The use of a pulsed domino first stage driving a chain of skewed logic static gates reduces power consumption but retains the speed of conventional domino logic circuits.
Abstract:
A method and apparatus for compensating for current-change induced voltage changes is disclosed. In one embodiment, a digital throttle unit coupled to an instruction pipeline may generate a compensating current signal, which may then cause a dummy load to consume a compensating current. In another embodiment, a counter responsive to changes in clock frequency may generate a ramp current signal, which may then cause a dummy load to consume a current corresponding to the ramp current signal.
Abstract:
An entry latch to provide a dynamic signal at an output port in response to input static signals at a pulldown network, the pulldown network to conditionally discharge an internal node depending upon the input static signals, the entry latch comprising a pass transistor having a first source/drain connected to the output port and a second source/drain connected to a gate of a pullup pMOSFET, where the pullup pMOSFET turns ON only if the pulldown network does not turn ON during the evaluation phase.
Abstract:
A clock buffer includes a clocked pull-up transistor and a clocked pull-down transistor. The clocked pull-up transistor has a drain coupled to an output line and a gate coupled to a clock signal line. The clocked pull-down transistor includes a drain coupled to the output line, a gate coupled to the clock signal line, and having a width Y. The buffer further includes a first pull-down transistor having a drain coupled to a source of the clocked pull-down transistor, a gate coupled to a first input signal line, and having a width that is at least 10% greater than Y. This clock buffer provides reduced power consumption in comparison to a more conventional clock buffer.
Abstract:
An N-bit conditional sum adder comprised of a number of 2-bit adders coupled in series. The 2-bit adders have a sum generation circuit which computes two sum bits from two 2-bit inputs. Each sum bit is processed by a maximum of two multiplexers in series for factoring any carry-ins from preceding 2-bit adders, regardless of the total number of N bits to be added. A carry generation circuit generates two carry signals. The appropriate carry signal is selected for propagation by a multiplexer comprised of a number of p-n passgates. The two carry signals plus their complements are first buffered before being input to the multiplexer. The multiplexer outputs the appropriate carry signal and its complement to be input to a succeeding 2-bit adder and for controlling a succeeding multiplexer selection.
Abstract:
A system comprising of low cost and low power projection engine comprising of means of producing non-coherent light source, means of condensing non-coherent light into narrow beams, means of focusing and scanning narrow beam light on screen where as image is projected on screen by producing light for each pixel of image. Source of non-coherent light can be LED.