摘要:
A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad.
摘要:
A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad. Next, a passivation layer is deposited and patterned to form contact holes respectively exposing the drain electrode, the gate pad, and the data pad. At this time, the contact hole on the gate pad only exposes the lower layer of the gate pad, and the gate insulating layer and the passivation layer completely cover the upper layer of the gate pad. Next, indium tin oxide is deposited and patterned to form a pixel electrode, a redundant gate pad, and a redundant data pad respectively connected to the pixel electrode, the gate pad, and the data pad.
摘要:
A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad. Next, a passivation layer is deposited and patterned to form contact holes respectively exposing the drain electrode, the gate pad, and the data pad. At this time, the contact hole on the gate pad only exposes the lower layer of the gate pad, and the gate insulating layer and the passivation layer completely cover the upper layer of the gate pad. Next, indium tin oxide is deposited and patterned to form a pixel electrode, a redundant gate pad, and a redundant data pad respectively connected to the pixel electrode, the gate pad, and the data pad.
摘要:
A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad. Next, a passivation layer is deposited and patterned to form contact holes respectively exposing the drain electrode, the gate pad, and the data pad. At this time, the contact hole on the gate pad only exposes the lower layer of the gate pad, and the gate insulating layer and the passivation layer completely cover the upper layer of the gate pad. Next, indium tin oxide is deposited and patterned to form a pixel electrode, a redundant gate pad, and a redundant data pad respectively connected to the pixel electrode, the gate pad, and the data pad.
摘要:
In liquid crystal display device having a multi-layer conductive layer, such conductive layer is formed using a photoresist pattern having different thicknesses depending on the position. Upper layer of the gate pad is removed using an etch mask of the photoresist pattern of different thickness. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire. Finally passivation layer is formed and an indium tin oxide layer is deposited and patterned to form a pixel electrode, a redundant gate pad, and a redundant data pad.
摘要:
Disclosed are ring-shaped gate wires and redundancy lines formed on a substrate so that defects due to disconnection of data lines can be readily repaired. The redundancy line is formed in a unit of a pixel, located outside the gate wire and divided into two portions. A gate insulating film is formed thereon, and data lines are formed thereon. Each of the data line overlaps the redundancy line and intersects a portion of the gate wire. A passivation film is formed on the data lines and transparent conductive connect patterns are formed thereon. The transparent connect pattern intersects two adjacent pixels and overlaps the ends of the redundancy lines facing each other. Since the end portions of the redundancy lines are bent out from the direction of the data line, it is not required that the connect pattern overlaps the data line. When the data line is disconnected on the step point where the data line intersects the gate wire, the redundancy lines can be short-circuited to the data line on either side of the disconnection point by using a laser to repair the disconnection.
摘要:
Disclosed is a thin film transistor substrate and a system for inspecting the same. The thin film transistor substrate comprises gate wiring formed on an insulation substrate and including gate lines, and gate electrodes and gate pads connected to the gate lines; a gate insulation layer covering the gate wiring; a semiconductor layer formed over the gate insulation layer; data wiring formed over the gate insulation layer and including data pads; a protection layer covering the data wiring; auxiliary pads connected to the data pads through contact holes formed in the protection layer; and a pad auxiliary layer formed protruding a predetermined height under the data pads. The inspection system for determining whether a thin film transistor substrate is defective, in which the thin film transistor substrate comprises gate wiring including gate lines, gate electrodes and gate pads, and data wiring including source electrodes and drain electrodes, includes a probe pin for contacting the gate pads or data pads and transmitting a corresponding signal, wherein a contact tip at a distal end of the probe pin for contacting the gate pads or the data pads is rounded, and a radius of the rounded contact tip is 2 μm or less, or the rounded contact tip is coated with gold (Au).
摘要:
Disclosed is a thin film transistor substrate and a system for inspecting the same. The thin film transistor substrate comprises gate wiring formed on an insulation substrate and including gate lines, and gate electrodes and gate pads connected to the gate lines; a gate insulation layer covering the gate wiring; a semiconductor layer formed over the gate insulation layer; data wiring formed over the gate insulation layer and including data pads; a protection layer covering the data wiring; auxiliary pads connected to the data pads through contact holes formed in the protection layer; and a pad auxiliary layer formed protruding a predetermined height under the data pads. The inspection system for determining whether a thin film transistor substrate is defective, in which the thin film transistor substrate comprises gate wiring including gate lines, gate electrodes and gate pads, and data wiring including source electrodes and drain electrodes, includes a probe pin for contacting the gate pads or data pads and transmitting a corresponding signal, wherein a contact tip at a distal end of the probe pin for contacting the gate pads or the data pads is rounded, and a radius of the rounded contact tip is 2 μm or less, or the rounded contact tip is coated with gold (Au).
摘要:
A method for manufacturing a thin film transistor array panel is disclosed. A gate wiring pattern is formed on an insulating substrate. A gate insulating layer is formed on the gate wiring pattern. A semiconductor pattern is formed on the gate insulating layer. A transparent conductive layer is formed on the gate insulating layer. The transparent conductive layer is patterned to form a pixel electrode. An opening is formed at a circumference of the pixel electrode. The opening minimizes misalignment during the manufacturing process and prevents shorts between a data line and the pixel electrode.
摘要:
Disclosed is a thin film transistor substrate and a system for inspecting the same. The thin film transistor substrate comprises gate wiring formed on an insulation substrate and including gate lines, and gate electrodes and gate pads connected to the gate lines; a gate insulation layer covering the gate wiring; a semiconductor layer formed over the gate insulation layer; data wiring formed over the gate insulation layer and including data pads; a protection layer covering the data wiring; auxiliary pads connected to the data pads through contact holes formed in the protection layer; and a pad auxiliary layer formed protruding a predetermined height under the data pads. The inspection system for determining whether a thin film transistor substrate is defective, in which the thin film transistor substrate comprises gate wiring including gate lines, gate electrodes and gate pads, and data wiring including source electrodes and drain electrodes, includes a probe pin for contacting the gate pads or data pads and transmitting a corresponding signal, wherein a contact tip at a distal end of the probe pin for contacting the gate pads or the data pads is rounded, and a radius of the rounded contact tip is 2 μm or less, or the rounded contact tip is coated with gold (Au).