METHOD OF FORMING FERROELECTRIC MEMORY DEVICE

    公开(公告)号:US20250159896A1

    公开(公告)日:2025-05-15

    申请号:US19023364

    申请日:2025-01-16

    Abstract: A ferroelectric memory device, a manufacturing method of the ferroelectric memory device and a semiconductor chip are provided. The ferroelectric memory device includes a gate electrode, a ferroelectric layer, a channel layer, first and second blocking layers, and source/drain electrodes. The ferroelectric layer is disposed at a side of the gate electrode. The channel layer is capacitively coupled to the gate electrode through the ferroelectric layer. The first and second blocking layers are disposed between the ferroelectric layer and the channel layer. The second blocking layer is disposed between the first blocking layer and the channel layer. The first and second blocking layers comprise a same material, and the second blocking layer is further incorporated with nitrogen. The source/drain electrodes are disposed at opposite sides of the gate electrode, and electrically connected to the channel layer.

    Stacked ferroelectric structure
    3.
    发明授权

    公开(公告)号:US12207474B2

    公开(公告)日:2025-01-21

    申请号:US17987066

    申请日:2022-11-15

    Abstract: The present disclosure relates to an integrated circuit (IC) in which a memory structure comprises a ferroelectric structure without critical-thickness limitations. The memory structure comprises a first electrode and the ferroelectric structure. The ferroelectric structure is vertically stacked with the first electrode and comprises a first ferroelectric layer, a second ferroelectric layer, and a first restoration layer. The second ferroelectric layer overlies the first ferroelectric layer, and the first restoration layer is between and borders the first and second ferroelectric layers. The first restoration layer is a different material type than that of the first and second ferroelectric layers and is configured to decouple crystalline lattices of the first and second ferroelectric layers so the first and second ferroelectric layers do not reach critical thicknesses. A critical thickness corresponds to a thickness at and above which the orthorhombic phase becomes thermodynamically unstable, such that remanent polarization is lost.

Patent Agency Ranking