摘要:
The present invention provides a method for treating a substrate that supports metal fine particles for forming a plating layer on a circuit pattern or TSVs in various substrates, in which further micronization treatment is enabled compared with the conventional methods, and the formation of a stable plating layer is enabled. The present invention is a method for treating a substrate, the method including bringing a substrate into contact with a colloidal solution containing metal particles in order to support the metal particles that serve as a catalyst for forming a plating layer on the substrate, in which the colloidal solution contains metal particles formed of Pd and having a particle size of 0.6 nm to 4.0 nm and a face-to-face dimension of the (111) plane of 2.254 Å or more. When an organic layer such as SAM is formed on a surface of the substrate before this treatment, the binding force of the Pd particles can be increased.
摘要:
The present invention provides a method for treating a substrate that supports metal fine particles for forming a plating layer on a circuit pattern or TSVs in various substrates, in which further micronization treatment is enabled compared with the conventional methods, and the formation of a stable plating layer is enabled. The present invention is a method for treating a substrate, the method including bringing a substrate into contact with a colloidal solution containing metal particles in order to support the metal particles that serve as a catalyst for forming a plating layer on the substrate, in which the colloidal solution contains metal particles formed of Pd and having a particle size of 0.6 nm to 4.0 nm and a face-to-face dimension of the (111) plane of 2.254 Å or more. When an organic layer such as SAM is formed on a surface of the substrate before this treatment, the binding force of the Pd particles can be increased.
摘要:
The present invention provides a method for forming a metal pattern on a pattern formation section set in a part or the whole of a region on a base material, the base material including a fluorine-containing resin layer on a surface including at least the pattern formation section, the method including the step of: forming a functional group on a pattern formation section of the fluorine-containing resin layer by a treatment such as ultraviolet-ray irradiation, then applying to the surface of the base material a metal fine particle dispersion liquid in which metal fine particles protected by an amine compound as a first protective agent and a fatty acid as a second protective agent are dispersed in a solvent, and fixing the metal fine particles on the pattern formation section.
摘要:
Provided are a fine silver particle ink composed of hexylamine, dodecylamine, oleic acid, fine silver particles and a solvent, in which the volume resistivity of a sintered body at 100° C. obtained after the ink is applied on a substrate by spin coating is 8 to 25 μΩ cm, a sintered body thereof, and a method for producing a fine silver particle ink. When a fine silver particle ink containing coated fine silver particles is produced by a silver-amine complex decomposition method, production can be carried out smoothly. The fine silver particle ink can be sintered even at a low temperature, and a sintered body thereof has a mirror surface and low volume resistance.
摘要:
A metal paste formed by kneading a solid content including silver particles and a solvent, in which the solid content includes silver particles containing silver particles having a particle size of 100 to 200 nm by 30% or more based on the number of particles, the silver particles have an average particle size of 60 to 800 nm as a whole, the silver particles constituting the solid content are bound with an amine compound having 4 to 8 carbon atoms in total as a protective agent, and the metal paste contains as an additive a high-molecular-weight ethyl cellulose having a number average molecular weight of 40000 to 90000. Since the metal paste contains a high-molecular-weight ethyl cellulose, a sintered body having a low resistance can be maintained while printability is improved. The metal paste has favorable printability, and can form a sintered body having a low resistance even in a low temperature region of 150° C. or lower.
摘要:
An electroconductive substrate including a base material and a metal wiring made of at least either of silver and copper, and the electroconductive substrate has an antireflection region formed on part or all of the metal wiring surface. This antireflection region is composed of roughened particles made of at least either of silver and copper and blackened particles finer than the roughened particles and embedded between the roughened particles. The blackened particles are made of silver or a silver compound, copper or a copper compound, or carbon or an organic substance having a carbon content of 25 wt % or more. The antireflection region has a surface with a center line average roughness of 15 nm or more and 70 nm or less. The electroconductive substrate is formed from metal wiring from a metal ink that forms roughened particles, followed by application of a blackening ink containing blackened particles.
摘要:
A metal ink containing metal particles including silver, a protective agent A including an amine compound, and a protective agent B including a fatty acid. The metal ink is configured such that the protective agent A includes at least one C4-12 amine compound, and the protective agent B includes at least one C22-26 fatty acid. It is preferable that the amine compound content is 0.2 mmol/g or more and 1.5 mmol/g or less on a silver particle mass basis. In addition, it is preferable that the fatty acid content is 0.01 mmol/g or more and 0.06 mmol/g or less on a silver particle mass basis.
摘要:
The present invention is a metal colloid solution comprising: colloidal particles consisting of metal particles consisting of one or two or more metal(s) and a protective agent bonding to the metal particles; and a solvent as a dispersion medium of the colloidal particles, wherein: a chloride ion concentration per a metal concentration of 1 mass % is 25 ppm or less; and a nitrate ion concentration per a metal concentration of 1 mass % is 7500 ppm or less. In the present invention, adsorption performance can be improved with adjustment of the amount of the protective agent of the colloidal particles. It is preferable to bind the protective agent of 0.2 to 2.5 times the mass of the metal particles.
摘要:
The present invention is a metal colloid solution comprising: colloidal particles consisting of metal particles consisting of one or two or more metal(s) and a protective agent bonding to the metal particles; and a solvent as a dispersion medium of the colloidal particles, wherein: a chloride ion concentration per a metal concentration of 1 mass % is 25 ppm or less; and a nitrate ion concentration per a metal concentration of 1 mass % is 7500 ppm or less. In the present invention, adsorption performance can be improved with adjustment of the amount of the protective agent of the colloidal particles. It is preferable to bind the protective agent of 0.2 to 2.5 times the mass of the metal particles.
摘要:
Provided are a fine silver particle ink composed of hexylamine, dodecylamine, oleic acid, fine silver particles and a solvent, in which the volume resistivity of a sintered body at 100° C. obtained after the ink is applied on a substrate by spin coating is 8 to 25 μΩcm, a sintered body thereof, and a method for producing a fine silver particle ink. When a fine silver particle ink containing coated fine silver particles is produced by a silver-amine complex decomposition method, production can be carried out smoothly. The fine silver particle ink can be sintered even at a low temperature, and a sintered body thereof has a mirror surface and low volume resistance.