Abstract:
A method of adaptive voltage scaling is shown incorporating a lookup table holding manufacturing characterization data in conjunction with one or more precision analog temperature sensors used for correcting for temperature effects.
Abstract:
Systems of screening memory cells of a memory include modulating bitline and/or wordline voltage. In a read operation, the wordline may be overdriven or underdriven with respect to a nominal operating voltage on the wordline. In a write operation, one or both of the bitline and wordline may be overdriven or underdriven with respect to corresponding a nominal operating voltage. Such a system has margin control circuity, which may be in the form of bitline and wordline margin controls, to modulate bitline and wordline voltages, respectively, in the memory cells of the memory array.
Abstract:
The invention is an intelligent connection of the internal scan logic in a multi-bit flip-flop register. Individual bits in this register are connected in a serial scan chain. In this invention the serial chain is connection reuses logic between slave latches on bit n and master latches on bit n+1. This reuse reduces the number of transistors required to implement the multi-bit register. This reduction in the number of required transistors enables a consequent reduction in integrated circuit area required, thereby reducing manufacturing cost. Alternatively, the area saved using this invention may be used for other purposes. This could increase the value of the corresponding integrated circuit without increasing manufacturing costs.
Abstract:
Systems and methods of screening memory cells by modulating bitline and/or wordline voltage. In a read operation, the wordline may be overdriven or underdriven as compared to a nominal operating voltage on the wordline. In a write operation, the one or both of the bitline and wordline may be overdriven or underdriven as compared to a nominal operating voltage of each. A built-in self test (BIST) system for screening a memory array has bitline and wordline margin controls to modulate bitline and wordline voltage, respectively, in the memory array.
Abstract:
An adaptive voltage scaling technique includes using a temperature sensor arranged on a semiconductor die to determine a current die temperature of the semiconductor die, using a performance sensor arranged on a semiconductor die to determine a current performance metric of the semiconductor die, determining whether the current performance metric matches an expected performance metric based at least partially on the current die temperature and, if the current performance metric does not match the expected performance metric, indicate a performance sensor error, when a performance sensor error is indicated, determining an updated power supply voltage for correcting the performance sensor error, and causing a current power supply voltage supplied by a power supply voltage source of the semiconductor die to be changed to the updated power supply voltage.
Abstract:
The invention is an intelligent connection of the internal scan logic in a multi-bit flip-flop register. Individual bits in this register are connected in a serial scan chain. In this invention the serial chain is connection reuses logic between slave latches on bit n and master latches on bit n+1. This reuse reduces the number of transistors required to implement the multi-bit register. This reduction in the number of required transistors enables a consequent reduction in integrated circuit area required, thereby reducing manufacturing cost. Alternatively, the area saved using this invention may be used for other purposes. This could increase the value of the corresponding integrated circuit without increasing manufacturing costs.
Abstract:
Power consumption is reduced by the use of a plurality of parameter reference targets, optimized for a subset of the complete temperature range. The prediction accuracy of the performance tracking sensor is optimized by using small segments of the operating temperature range.