Abstract:
A method for producing an AlN single crystal substrate, the method including: i) preparing a first base substrate consisting of a first AlN single crystal; ii) growing a first AlN single crystal layer over a main face of the first base substrate, to obtain a layered body; iii) cutting the first MN single crystal layer of the layered body, to separate the layered body into a second base substrate and a first part of the first AlN single crystal layer, the second base substrate including the first base substrate and a thin film layered thereon, the thin film being a second part of the first AlN single crystal layer; iv) polishing a surface of the thin film, to obtain a third base substrate consisting of a second AlN single crystal; and v) growing a second AlN single crystal layer over the polished surface of the third base substrate.
Abstract:
The method for manufacturing an aluminum-based group III nitride single crystal includes the step of supplying an aluminum halide gas and a nitrogen source gas onto a base substrate, such that a reaction of the aluminum halide gas and the nitrogen source gas is conducted on the base substrate, wherein the reaction of the aluminum halide gas and the nitrogen source gas is conducted under coexistence of a halogen-based gas such that a halogen-based gas ratio (H) represented by the following formula (1) is no less than 0.1 and less than 1.0: H=VH/I(VH+VAl) (1) (In the formula (1), VH represents a supply of the halogen-based gas; and VAl represents a supply of the aluminum halide gas); and a growth rate of the aluminum-based group III nitride single crystal is no less than 10 μm/h.
Abstract:
An apparatus for manufacturing a group III nitride single crystal including: a reaction vessel including a reaction area, wherein in the reaction area, a group III source gas and a nitrogen source gas are reacted such that a group III nitride crystal is grown on a substrate; a susceptor arranged in the reaction area and supporting the substrate; a group III source gas supply nozzle supplying the group III source gas to the reaction area; and a nitrogen source gas supply nozzle supplying the nitrogen source gas to the reaction area, wherein the nitrogen source gas supply nozzle is configured to supply the nitrogen source gas and at least one halogen-based gas selected from the group consisting of a hydrogen halide gas and a halogen gas to the reaction area.
Abstract:
A group III nitride single crystal substrate including a main surface, the main surface including: a center; a periphery; an outer region whose distance from the center is greater than 30% of a first distance, the first distance being a distance from the center to the periphery; and an inner region whose distance from the center is no more than 30% of the first distance, wherein a ratio (vA−vB)/vB is within the range of ±0.1%, wherein vA is a minimum value of peak wave numbers of micro-Raman spectra in the inner region; and vB is an average value of peak wave numbers of micro-Raman spectra in the outer region.
Abstract:
A group III nitride single crystal substrate comprises: a first main face; and a first back face opposite to the first main face, wherein an absolute value of a radius of curvature of the first main face of the substrate is 10 m or more; an absolute value of a radius of curvature of a crystal lattice plane at a center of the first main face of the substrate is 10 m or more; and a 1/1000 intensity width of an X-ray rocking curve of a low-incidence-angle face at the center of the first main face of the substrate is 1200 arcsec or less.
Abstract:
A group III nitride single crystal substrate including a main surface, the main surface including: a center; a periphery; an outer region whose distance from the center is greater than 30% of a first distance, the first distance being a distance from the center to the periphery; and an inner region whose distance from the center is no more than 30% of the first distance, wherein a ratio (νA−νB)/νB is within the range of ±0.1%, wherein νA is a minimum value of peak wave numbers of micro-Raman spectra in the inner region; and νB is an average value of peak wave numbers of micro-Raman spectra in the outer region.
Abstract:
An apparatus for manufacturing a group III nitride single crystal including: a reaction vessel including a reaction area, wherein in the reaction area, a group III source gas and a nitrogen source gas are reacted such that a group III nitride crystal is grown on a substrate; a susceptor arranged in the reaction area and supporting the substrate; a group III source gas supply nozzle supplying the group III source gas to the reaction area; and a nitrogen source gas supply nozzle supplying the nitrogen source gas to the reaction area, wherein the nitrogen source gas supply nozzle is configured to supply the nitrogen source gas and at least one halogen-based gas selected from the group consisting of a hydrogen halide gas and a halogen gas to the reaction area.