Abstract:
An epoxy resin composition produces a cured product having improved elastic modulus and improved nominal strain at compressive fracture. The epoxy resin composition is a fiber-reinforced composite material having excellent compression strength and interlayer toughness. The epoxy resin composition contains at least the following constituent components [A], [B] and [C]. [A] A specific ortho type epoxy resin. [B] At least one component selected from the group consisting of: thermoplastic resins that are compatible with the epoxy resin [A]; and core-shell type polymers. [C] An amine curing agent.
Abstract:
[Problem] To provide: a fiber-reinforced composite material having both Mode I interlaminar fracture toughness and compressive strength under wet heat conditions; an epoxy resin composition for producing the fiber-reinforced composite material; and a prepreg produced using the epoxy resin composition. [Solution] An epoxy resin composition comprising at least the following constituents [A], [B] and [C]: [A] an epoxy resin; [B] composite polyamide microparticles which satisfy such a requirement (b1) the materials constituting the particles are a polyamide (B1) and a thermoplastic elastomer resin (B2), such a requirement (b2) that the melting point or the glass transition temperature of the polyamide (B1) is higher than 100° C. and such a requirement (b3) the number average particle diameter is 0.1 to 100 μm; and [C] a curing agent.
Abstract:
The purpose of the present invention is to provide: a molding material from which a carbon fiber reinforced composite material having excellent impact resistance and tensile strength is obtained; and a molding material from which a glass fiber reinforced composite material, that has high bending strength and impact resistance, has excellent weather resistance, and can suppress a decrease in bending strength after water absorption, is obtained. In order to achieve the purpose, the molding material according to the present invention is a molding material formed of an epoxy resin composition and a carbon fiber and/or a glass fiber, wherein the epoxy resin composition includes all of [A] to [C], the carbon fiber satisfies conditions [a] and [b], and the glass fiber has a surface functional group capable of forming a covalent bond with an isocyanate group. [A] Epoxy resin having at least two oxylan groups in molecule [B] Epoxy resin curing agent having at least two isocyanate groups in molecule [C] Catalyst [a] Having substantially perfect circular cross section [b] Average fiber diameter of 4.0-8.0 μm
Abstract:
The present invention aims to provide an epoxy resin composition for a fiber-reinforced composite material that maintains low viscosity during injection into reinforcing fibers to realize good impregnating and also has high toughness and high heat resistance and also aims to provide a fiber-reinforced composite material produced therefrom. Also provided is a molding method for a fiber-reinforced composite material including at least a reinforcing fiber [A] and a cured product of an epoxy resin composition [B], wherein the epoxy resin composition [B] includes the components [a], [b], and [c] specified below, and the epoxy resin composition [B] is cured in such a manner that the absorbance ratio Da/(Da+Db) is in the range of 0.4 to 1 in producing the fiber-reinforced composite material: [a] an epoxy resin having at least two oxirane groups in the molecule, [b] an epoxy resin curing agent having at least two isocyanate groups in the molecule, and [c] a catalyst.
Abstract:
An epoxy resin composition comprising an epoxy resin [A], an amine-based curing agent [B] and a block copolymer [C] as components, wherein the epoxy resin [A] contains [Aa] an epoxy resin having at least one structure selected from a condensed polycyclic structure, biphenyl structure and oxazolidone ring structure; [Ab] an epoxy resin selected from a polyfunctional amine type epoxy resin [Ab1] and a liquid bisphenol type epoxy resin [Ab2], and the block copolymer [C] is at least one block copolymer selected from the group consisting of S-B-M, B-M and M-B-M. The present invention provides an epoxy resin composition that can be cured to form a cured product excellent in heat resistance, elastic modulus and toughness.
Abstract:
A purpose of the present invention is to provide a thermosetting epoxy resin composition that manifests latency at a temperature at which the thermosetting resin cures and has an excellent curing rate, and molded articles obtained by thermosetting the same. A further purpose is to provide a fiber-reinforced composite material obtained by blending with reinforcing fibers, a molding material for a fiber-reinforced composite material, and a method for producing a fiber-reinforced composite material. To achieve the above, the thermosetting epoxy resin composition of the present invention is a thermosetting epoxy resin composition including the following constituent elements [a], [b], and [c], wherein the relationship between the curing time (Tc) and the induction time (Ti) satisfies 1
Abstract:
The present invention addresses the problem of providing a polyaryletherketone resin composition having excellent toughness and fluidity, a fiber-reinforced resin base material having excellent impregnating ability and toughness, and a molded article thereof. In order to solve said problem, the present invention has the following compositional make-up. A polyaryletherketone resin composition containing, with respect to (A) 100 parts by mass of a polyaryletherketone, (B) 1-100 parts by mass of a liquid crystalline polyester, wherein the polyaryletherketone resin composition forms a sea-island structure, and the average diameter of the island phases is 10-1000 nm.
Abstract:
Provided are: an epoxy resin composition having exceptional performance with regard to impregnating reinforcing fibers, enabling optimal control of resin flow during molding, and having exceptional in-plane shear strength; a cured epoxy resin product; and a prepreg. An epoxy resin composition comprising at least the following constituent elements [A], [B], and [C]: [A] an epoxy resin, [B] a polyether sulfone having a weight-average molecular weight of 2000-20000 g/mol, [C] a curing agent
Abstract:
Provided is an epoxy resin composition with improved heat resistance and resin elongation. Further provided is a fiber-reinforced composite material which uses the epoxy resin composition and thereby excels in compression strength in high-temperature environments and interlaminar toughness. The epoxy resin composition comprises the constituents [A], [B] and [C], 8-40 mass % of [B] is contained in the epoxy resin composition. The number of moles of active hydrogen contained in [C] is 1.05-2.0 times the number of moles of epoxy groups contained in the entire epoxy resin composition, in a cured resin formed by curing the epoxy resin composition and having a degree of curing of at least 90% obtained by DSC (differential scanning catorimetry), [A], [B] and [C] form a monolayer structure, or a phase separation structure of less than 500 nm. The rubber state modulus of elasticity Y (MPa) and glass transition temperature X (° C.) obtained by DMA (dynamic mechanical analysis) of the cured resin satisfy formula (1). [A] amine type epoxy resin [B] thermoplastic resin [C] aromatic amine 0.19X/° C.-31.5≦Y/MPa≦0.19X/° C.-27 (1)
Abstract:
The purpose of the present invention is to provide a thermosetting epoxy resin composition with ability to allow cured products to have excellent toughness and to stably maintain high stiffness. In order to achieve the purpose, the thermosetting epoxy resin composition of the present invention includes the following components [a], [b], [c], and [d], wherein the stoichiometric ratio [b]/[a] of the component [b] to the component [a] is in the range from 0.7 to 2.0 thermosetting epoxy resin composition:
[a] an epoxy resin; [b] an isocyanate curing agent; [c] an elastomeric toughening agent; [d] an oxazolidone cyclization catalyst.