Abstract:
Provided is an environmentally friendly process for producing a sheet-shaped material having both an elegant, napped appearance and a soft texture, which qualities have not been achieved concurrently, and also exhibiting good abrasion resistance. The process of the present invention for producing a sheet-shaped material includes the successive steps of (a) adding a polyvinyl alcohol having a degree of saponification of 98% or more and a degree of polymerization of 800 to 3,500 to a fibrous substrate in an amount of 0.1 to 50% by mass relative to the total mass of fibers in the fibrous substrate; (b) adding a waterborne polyurethane to the fibrous substrate with the added polyvinyl alcohol; and (c) removing the polyvinyl alcohol from the fibrous substrate with the added waterborne polyurethane.
Abstract:
Provided is an artificial leather that achieves both a soft texture and excellent durability, and a method for manufacturing the same, the leather comprising: a fibrous base material formed from superfine fibers having an average single fiber diameter of 0.1-10 μm; and a polymeric elastic body, where the polymer elastic body comprises a compound having a hydrophilic group and a compound having an ethylene oxide skeleton, the content of the compound in the polymeric elastic body of the artificial leather being 0.1-5 parts by mass per 100 parts by mass of the polymeric elastic body.
Abstract:
The present invention provides a sheet-like material having soft texture, durability capable of withstanding practical use, and abrasion resistance. The sheet-like material of the present invention is a sheet-like material containing a nonwoven fabric composed of an ultrafine fiber having an average single fiber diameter 0.3 to 7 μm; and an elastic resin, wherein the elastic resin is a polyurethane resin (D) which contains: as essential constituent monomers, a copolymerized polycarbonate diol (A1) which contains a structural unit derived from C3-5 alkane diol (a1) and a structural unit derived from C8-12 alkane diol (a2), the molar ratio of the alkanediol (a2) with respect to the total number of moles of the alkanediol (a1) and the alkanediol (a2) being 50 to 95 mole %; a polycarbonate diol (A2) containing a structural unit derived from a C4-6 alkane diol (a3); an organic diisocyanate (B); and a chain extender (C), and the polyurethane resin (D) satisfies the following conditions (1) to (3): (1) The copolymerized polycarbonate diol (A1) has a heat quantity of fusion (ΔH) o 40 to 100 J/g, the heat quantity of fusion (ΔH) being determined according to a melting point measuring method provided in JIS K7121-1987; (2) The polycarbonate diol (A2) has a heat quantity of fusion (ΔH) of 0 J/g; (3) A difference (ΔTm) in a melting point (Tm) between a mixture (A12) of the copolymerized polycarbonate diol (A1) with the polycarbonate diol (A2) and the copolymerized polycarbonate diol (A1) is 1.5° C. or lower, the melting point (Tm) being determined by a melting point measuring method provided in JIS K7121-1987.
Abstract:
The present invention provides an artificial leather including an entangled fiber mass of ultrafine fibers having a monofilament fineness of 0.01 dtex or more and 0.50 dtex or less and a polymeric elastomer; wherein at least one surface is napped; the cross-sectional profile curve of the napped surface has an arithmetic mean height Pa of 26 μm or more and 100 μm or less; the arithmetic mean height Pa of the cross-sectional profile curve of the opposite surface is 20% or more and 80% or less of the cross-sectional roughness Pa of the napped side; the existence frequency of asperity peaks found in the cross-sectional profile curve of the napped surface is 1.8 or more and 20 or less per 1.0 mm; and a woven or knitted fabric lamination is present near the opposite surface at a depth position of 10% or more and 50% or less.
Abstract:
An automobile instrument panel surface material includes a microfiber having an average single fiber diameter of 0.3 to 7 μm; and polyurethane, the automobile instrument panel surface material having nap formed of the microfiber, the automobile instrument panel surface material having, of light fastnesses measured according to a light fastness measurement method of JIS L 0843:2006 under conditions of a xenon arc intensity of 110 MJ/m2, a fading by gray scale evaluation of grade 3.5 or higher, the automobile instrument panel surface material having a glass haze of 10.0% or less as measured according to a glass haze evaluation method of ISO 6452:2007 under conditions of a heating temperature of 100° C. and a heating time of 20 hours.
Abstract:
A dyed artificial leather includes a fibrous base containing ultrafine fibers with a filament fineness of 2 decitex or less and a polymeric elastomer, and characterized in that the lightness difference ΔL* between the ultrafine fibers and the polymeric elastomer represented by the following equation meet the requirement of −16≤ΔL*≤5: ΔL*=(average lightness L* of ultrafine fibers)−(average lightness L* of polymeric elastomer). A production method for dyed artificial leather includes a first dying step in which artificial leather constituted mainly of a fibrous base containing ultrafine fibers with a filament fineness of 2 decitex or less and a polymeric elastomer is dyed using a dye and a subsequent second dyeing step performed at a dye concentration that is 0.1% to 30% of the dye concentration (owf) in the first dyeing step.
Abstract:
Provided is an environmentally friendly process for producing a sheet-shaped material having both an elegant, napped appearance and a soft texture, which qualities have not been achieved concurrently, and also exhibiting good abrasion resistance. The process of the present invention for producing a sheet-shaped material includes the successive steps of (a) adding a polyvinyl alcohol having a degree of saponification of 98% or more and a degree of polymerization of 800 to 3,500 to a fibrous substrate in an amount of 0.1 to 50% by mass relative to the total mass of fibers in the fibrous substrate; (b) adding a waterborne polyurethane to the fibrous substrate with the added polyvinyl alcohol; and (c) removing the polyvinyl alcohol from the fibrous substrate with the added waterborne polyurethane.
Abstract:
A dyed artificial leather includes a fibrous base containing ultrafine fibers with a filament fineness of 2 decitex or less and a polymeric elastomer, and characterized in that the lightness difference ΔL* between the ultrafine fibers and the polymeric elastomer represented by the following equation meet the requirement of −16≦ΔL*≦5: ΔL*=(average lightness L* of ultrafine fibers)−(average lightness L* of polymeric elastomer). A production method for dyed artificial leather includes a first dying step in which artificial leather constituted mainly of a fibrous base containing ultrafine fibers with a filament fineness of 2 decitex or less and a polymeric elastomer is dyed using a dye and a subsequent second dyeing step performed at a dye concentration that is 0.1% to 30% of the dye concentration (owf) in the first dyeing step.
Abstract:
An automobile instrument panel surface material includes a microfiber having an average single fiber diameter of 0.3 to 7 μm; and polyurethane, the automobile instrument panel surface material having nap formed of the microfiber, the automobile instrument panel surface material having, of light fastnesses measured according to a light fastness measurement method of JIS L 0843:2006 under conditions of a xenon arc intensity of 110 MJ/m2, a fading by gray scale evaluation of grade 3.5 or higher, the automobile instrument panel surface material having a glass haze of 10.0% or less as measured according to a glass haze evaluation method of ISO 6452:2007 under conditions of a heating temperature of 100° C. and a heating time of 20 hours.