摘要:
The object of the present invention is to provide an oxygen storage material used for an exhaust gas purifying catalyst that is superior in stability at high temperatures. The composite oxide material of the invention comprises crystalline particles of a ceria-zirconia composite oxide with a pyrochlore structure and crystals of a ceria-zirconia composite oxide with a fluorite structure on the particle surface, in which the crystals of the ceria-zirconia composite oxide with a fluorite structure contains zirconia in a larger amount than that of ceria, and such crystals are integrated with the crystalline particles of the ceria-zirconia composite oxide with a pyrochlore structure. The composite oxide material of the invention has high oxygen storage capacity that is less likely to decrease at high temperatures.
摘要:
A ceria-zirconia-based composite oxide containing a composite oxide of ceria and zirconia is provided, in which primary particles having a particle diameter of 1.5 to 4.5 μm account for, on a particle number basis, at least 50% of all primary particles in the ceria-zirconia-based composite oxide, and the molar ratio of cerium to zirconium in the ceria-zirconia-based composite oxide is between 43:57 and 55:45.
摘要:
A core-shell oxide material comprises: a core which comprises a ceria-zirconia based solid solution powder having at least one ordered phase of a pyrochlore phase and a κ phase; and a shell which comprises an alumina based oxide disposed on at least a portion of a surface of the core.
摘要:
An oxygen storage material comprises a Ce—Zr-Ln-Ti-based composite oxide containing cerium (Ce), zirconium (Zr), a rear-earth element (Ln: excluding cerium), and titanium (Ti), wherein at least part of the rear-earth element and at least part of the titanium are solid-dissolved in a composite oxide of the cerium and the zirconium, and the Ce—Zr-Ln-Ti-based composite oxide has a composition expressed by the following chemical formula (1): Cea-xLnxZrb-yTiyOδ (1), where a, b, x, and y are numbers satisfying conditions of a=0.4 to 0.6, b=0.4 to 0.6, x=0 to a (exclusive of x=0 and x=a), y=0 to 0.3 (exclusive of y=0), and a+b=1, and δ is a number of 1.7 to 2.2.
摘要:
An oxygen storage material comprises a La—Co—Al-based composite oxide containing lanthanum, cobalt and aluminum. The La—Co—Al-based composite oxide is in a form in which at least part of the aluminum is solid-dissolved in a La—Co composite oxide having a perovskite structure, and has a composition expressed by the following chemical formula (1): LaCoyAlxOδ (1) where x and y are numbers satisfying conditions of 0
摘要:
A catalyst for purification of exhaust gas in which Pd-based nanoparticles and ceria nanoparticles are supported on a composite metal oxide support containing alumina, ceria, and zirconia, wherein a molar ratio (Ce/Pd) of Ce and Pd supported on the support is 1 to 8, a proximity α between Pd and Ce is 0.15 to 0.50, wherein the proximity α is determined, based on Pd and Ce distribution maps in an element mapping image of energy dispersive X-ray analysis, by the following formula (1):
α =
∑
j = 0
N - 1
∑
i = 0
M - 1
(
(
I (
i , j
)
-
I ave
)
(
T (
i , j
)
-
T ave
)
)
∑
j = 0
N - 1
∑
i = 0
M - 1
(
I (
i , j
)
-
I ave
)
2
-
∑
j = 0
N - 1
∑
i = 0
M - 1
(
T (
i , j
)
-
T ave
)
2
,
( 1 )
a Pd dispersity after a heat-resistance test at 1050° C. for 25 hours is 0.8% or more.
摘要:
An oxygen storage material including a ceria-zirconia based composite oxide containing a composite oxide of ceria and zirconia, wherein the ceria-zirconia based composite oxide comprises at least one rare-earth element selected from the group consisting of lanthanum, yttrium, and neodymium, and an amount of the rare-earth element(s) contained in total is 1 to 10% by atom in terms of element relative to a total amount of cerium and zirconium in the ceria-zirconia based composite oxide, 60 to 85% by atom of the entire amount of the rare-earth element(s) is contained in a near-surface upper-layer region extending from a surface of each primary particle of the ceria-zirconia based composite oxide to a depth of 50 nm in the primary particle, and 15 to 40% by atom of the entire amount of the rare-earth element(s) is contained in a near-surface lower-layer region extending from a depth of 50 nm to a depth of 100 nm in the primary particle, a content ratio of cerium and zirconium in the ceria-zirconia based composite oxide is in a range of 40:60 to 60:40 in terms of an atomic ratio ([Ce]:[Zr]), and the ceria-zirconia based composite oxide has an intensity ratio {I(14/29) value} between a diffraction line at 2θ=14.5° and a diffraction line at 2θ=29° which satisfies the following condition: I(14/29) value≥0.032, where the intensity ratio {I(14/29) value} is determined from an X-ray diffraction pattern using CuKα obtained by an X-ray diffraction measurement conducted after heating in air under a temperature condition of 1100° C. for 5 hours.
摘要:
A ceria-zirconia composite oxide includes at least one of lanthanum, yttrium, and praseodymium. A rate of a total content of the at least one rare earth element to a total content of cerium and zirconium is 0.1 at % to 4.0 at %. A content of the rare earth element present in near-surface regions, which are at a distance of less than 50 nm from surfaces of primary particles of the ceria-zirconia composite oxide, accounts for 90 at % or more of the total content of the rare earth element. An average particle size of the primary particles of the ceria-zirconia composite oxide is 2.2 μm to 4.5 μm. After a predetermined durability test, the intensity ratio I(14/29) of a diffraction line at 2θ=14.5° to a diffraction line at 2θ=29° and the intensity ratio I(28/29) of a diffraction line at 2θ=28.5° to the diffraction line at 2θ=29° respectively satisfy the following conditions: I(14/29)≥0.02, and I(28/29)≤0.08.
摘要:
A catalyst support for purification of exhaust gas includes a porous composite metal oxide, the porous composite metal oxide containing alumina, ceria, and zirconia and having an alumina content ratio of from 5 to 80% by mass, wherein after calcination in the air at 1100° C. for 5 hours, the porous composite metal oxide satisfies a condition such that standard deviations of content ratios (as at % unit) of aluminum, cerium and zirconium elements are each 19 or less with respect to 100 minute areas (with one minute area being 300 nm in length×330 nm in width) of the porous composite metal oxide, the standard deviation being determined by energy dispersive X-ray spectroscopy using a scanning transmission electron microscope equipped with a spherical aberration corrector.
摘要:
An oxygen storage material comprises three pyrochlore-type composite oxides which are a ceria-zirconia composite oxide, a lanthana-zirconia composite oxide, and a ceria-zirconia-lanthana composite oxide, and which coexist together, wherein the oxygen storage material contains: first secondary particles made of the pyrochlore-type ceria-zirconia composite oxide and the pyrochlore-type ceria-zirconia-lanthana composite oxide; and second secondary particles made of the pyrochlore-type lanthana-zirconia composite oxide and the pyrochlore-type ceria-zirconia-lanthana composite oxide.