Abstract:
A battery mounting structure for maintaining a sufficient passenger compartment in vehicles is provided. The battery mounting structure comprises a pair of longitudinal side sills (11, 12), and a battery pack (7) disposed between the side sills (11, 12). A plurality of battery modules (9) are juxtaposed in a casing (8) of the battery pack (7). A linear depression (39) protrudes downwardly from a reinforcement member (15) situated underneath a floor panel (17) supported by the side sills (11, 12), and the battery pack (7) has a linear depression (38) hold the linear depression (39) therein.
Abstract:
A vehicle includes a lower back panel, a rear side member, a gusset, a roof side rail, and a coupling member. The lower back panel has an outer panel and a lower back reinforcement, which is joined to the outer panel. The gusset is joined to both the lower back reinforcement and the rear side member. The coupling member is joined to both the rear end of the roof side rail and the lower back reinforcement. When viewed in the vehicle vertical direction, a region of the lower back reinforcement to which the gusset is joined overlaps with a region of the lower back reinforcement to which the coupling member is joined.
Abstract:
A sensor placement structure has: a vehicle skeleton member of a vehicle, the vehicle skeleton member having a hollow cross-section; a peripheral information detecting sensor that is mounted to a vehicle outer side of the vehicle skeleton member, the peripheral information detecting sensor having a detecting section that detects information about a periphery of the vehicle; and a cover that covers the peripheral information detecting sensor from a vehicle outer side of the peripheral information detecting sensor, the cover being composed of a material that is transmissive of a detection medium that is detected by the detecting section.
Abstract:
A vehicle body end section structure is obtained that enables a spacer member that transmits load to a framework member in a small overlap collision to be suppressed from impinging on a wheel in a minor collision. The vehicle body end section structure comprises a pair of left and right framework members, a bumper framework section connected to leading end portions of the pair of framework members, and a spacer member that projects out from a jutting-out portion of the bumper framework section toward a framework member side. The spacer member is disposed such that a rotation trajectory of the spacer member about a connection location between the bumper framework section and the framework member, the connection location is positioned on an opposite side in the vehicle width direction of the spacer member, does not impinge on a wheel in plan view.
Abstract:
A compressor installation structure for a vehicle has: a first compressor that is installed in a vehicle and that is driven by a first displacement body repeating a first movement at a predetermined cycle; and a second compressor that is installed in the vehicle and that is driven by a second displacement body repeating a second movement at the predetermined cycle, wherein, in a state in which the first compressor and the second compressor are installed in the vehicle, a first displacement direction of a first centroid of the first displacement body at a time at which the first displacement body performs the first movement is an opposite direction from a second displacement direction of a second centroid of the second displacement body at a time at which the second displacement body performs the second movement.
Abstract:
A compressor installation structure for a vehicle has: a battery that is disposed at a vehicle lower side of a floor portion of a vehicle cabin; a power unit that is disposed at one side in a vehicle front-rear direction with respect to the battery; and a compressor that is configured to be driven by electric power supplied thereto from the battery, and that is disposed at one side in the vehicle front-rear direction with respect to the battery, and that is disposed at another side in a vehicle front-rear direction with respect to the power unit.
Abstract:
A battery mounting structure having an enhanced rigidity against an impact load applied from the side is provided. Battery modules are juxtaposed to form arrays of the battery pack in a battery pack and the battery pack is disposed between the frame members. A load transmission member is disposed in a clearance between the battery modules adjacent to each other in a width direction of the vehicle. The load transmission member is crushed in the width direction by an impact load applied from the side of the vehicle to absorb collision energy.
Abstract:
A vehicle lower portion structure includes: framework members including a pair of first framework members respectively disposed at a left side and a right side in a vehicle width direction, and extending in a vehicle front-rear direction; a battery pack disposed between the first framework members; a connecting member that extends from the battery pack to at least one side in the vehicle front-rear direction, the connecting member connecting the battery pack with the framework members at the one side in the vehicle front-rear direction relative to the battery pack; and an electronic device installed at the connecting member.
Abstract:
A battery mounting structure is provided to prevent water intrusion into a clearance between a battery pack and a floor panel of a vehicle. The battery mounting structure comprises: frame members extending longitudinally on both sides of the vehicle; a floor panel disposed between the frame members; and a battery pack situated underneath the floor panel. A sealing member is interposed between a periphery of the battery pack and a portion extending from a member opposed to the battery pack, and a drain hole is formed in the sealing member to connect an inner side and an outer side of the sealing member.
Abstract:
The vehicle body front portion structure includes a pair of framework members, a bumper framework portion and spacer members. The framework members are long in a vehicle front-and-rear direction and are arranged side by side in a vehicle width direction. Front end sides of the framework members are energy-absorbing portions. The bumper framework portion is long in the vehicle width direction and spans between the front ends of the pair of framework members. The bumper framework portion includes protruding portion that protrudes to vehicle width direction outer sides relative to the framework members. Each spacer member includes a first portion extending from a front end portion and a second portion curving inward in the vehicle width direction from the first portion.