摘要:
A concentric multi-tubular burner for synthesizing glass particles having a center port group constituted by a combination of jet ports of raw material gas, combustible gas and oxygen gas, wherein an outer wall of the oxygen gas jet port in the center port group protrudes more toward a burner head than an inner wall of the oxygen gas jet port. The flow rate of oxygen gas jetted from the oxygen gas jet port of the center port group is controlled to be in a proper range.
摘要:
A concentric multi-tubular burner for synthesizing glass particles having a center port group constituted by a combination of jet ports of raw material gas, combustible gas and oxygen gas, wherein an outer wall of the oxygen gas jet port in the center port group protrudes more toward a burner head than an inner wall of the oxygen gas jet port. The flow rate of oxygen gas jetted from the oxygen gas jet port of the center port group is controlled to be in a proper range.
摘要:
A glass body for optical fiber containing GeO.sub.2 --SiO.sub.2 glass in a core portion thereof, in which the GeO.sub.2 --SiO.sub.2 glass has an absorbance at 5.16 eV of at least 1/mm but not higher than 2.5/mm or in which concentration of Ge.sup.2+ contained in the GeO.sub.2 --SiO.sub.2 glass substantially lies within the range of 1.1.times.10.sup.-9 to 2.8.times.10.sup.-9 mol/mm.sup.3 as calculated by the following general equation: A=.epsilon..sub.5.16ev .multidot.C.sub.(Ge2+) .multidot.1 wherein A is absorbance which is expressed by A=-log T (T being transmittance) and normalized per 1 mm of optical path length, C.sub.(Ge2+) is Ge.sup.2+ concentration, .epsilon..sub.5.16ev is absorption coefficient (1/mol/cm), and 1 is optical path length.
摘要:
A dehydration and consolidation furnace and a dehydration and consolidation method in which gas in a chamber does not leak to a furnace body room and gas in a furnace body room does not leak into a chamber is provided. A furnace of one embodiment of this invention has first muffle tube 3 and second muffle tube 4. The second muffle tube 4 is arranged coaxially around the first muffle tube 3. An optical fiber preform is arranged in this furnace. During the dehydration and consolidation process the pressure of the intermediate room 10 is set lower than a pressure inside the first muffle tube and outside the second muffle tube, and a gas supply and exhaust of the intermediate room 10 are performed independent of the gas supply and exhaust of the first muffle tube and a furnace body room.
摘要:
The present invention relates to an OFA having a high signal gain, easily manufactured, having a high mechanical strength, having a small splice loss with respect to other optical fibers, and rarely encountering the occurrence of noise at a signal wavelength. The OFA according to the present invention has a function of amplifying signals propagating therethroug by pumping light supplied thereto, and comprises, at least, a core region, an inner cladding region provided on the periphery of the core region, an outer cladding region provided on the periphery of the inner cladding region, and one or more node coupling gratings. An element for signal amplification is added to at least the core region. The core region has a structure ensuring a core mode with respect to the signals, while the inner cladding region has a structure ensuring a multi-mode with respect to the pumping light. Each of the mode coupling gratings passes core mode signals therethrough, and induces a mode coupling between the inner cladding mode and the core mode with respect to the pumping light.
摘要:
A process for producing fluorine-containing glass. An SiO2 soot is synthesized by hydrolyzing SiCl4. The soot is heated in a chlorine-compound-free atmosphere containing a fluorine compound gas to form a fluorine-containing silica glass. The glass contains not more than 10 ppm OH group, not more than 10 ppm Cl, and not less than 1,000 ppm F. The concentration ratio of F/Cl is 10,000 or more.
摘要:
Stress exerted on an inner or outer circumferential side of a glass tube 6 is controlled when a glass material 3 is heated and softened by a heating element 41 provided around the glass material 3 and a piercing plug 31 is relatively pressed into a softened region of the glass material 3 to thereby form the glass material 3 into the glass tube 6 gradually. For example, the control of the stress can be carried out by controlling an internal or external pressure of the glass tube 6. As a result, the deformation of the glass tube 6 just after piercing is prevented so that the glass tube 6 can be obtained with high quality. It is also possible to solve the problem that cracks may occur easily at the time of reheating because of residual stress distribution after cooling.
摘要:
In an optical waveguide grating in an optical fiber having a cladding region around a core region, a periodic refractive index distribution is existed in a predetermined area of the core region along the optical axis. The core region has a composition of GeO2—P2O5—SiO2 based glass, for example, whereas the cladding region is made of SiO2, and the co-doping ratio in the core region is adjusted, so as to lower the temperature dependence of characteristics. The doping amount of P2O5 in the core region is preferably {fraction (1/15)} to 1 times, more preferably 0.6 to 1 times that of GeO2.
摘要:
Light is directed to each photosensitive section by independently adjusting the curvature or thickness of each light converging lens above the photosensitive section, irrespective of the shape of a photosensitive element (photosensitive section), i.e., irrespective of the shape having a longer side in the row direction than the side in the column direction. Specifically, a strip layer is formed above a plurality of photosensitive sections, disposed in a row direction. Light converging lenses are formed on each strip layer to obtain a desired curvature or thickness.
摘要:
The present invention provides a glass preform heating furnace in which the occurrence of arching is suppressed. The glass preform heating furnace is equipped with a susceptor (3); a slit heater (4); an insulator; and a furnace body, wherein, in the case that the space between the slit heater (4) and the susceptor or between the slit heater (4) and the conductive member closest to the slit heater is D, that the maximum value of the electric field in this space is E1, that the number of the slits in the slit heater is N, that the slit width of the slit heater is S, and that the maximum value of the electric field in the slit space is E2, the values of D, N and S are set so that E1≧E2 is established.