摘要:
A liquid discharging device includes a plurality of liquid discharge sections. Each liquid discharge section includes a reservoir, a nozzle that discharges a solution supplied from the reservoir, and discharge energy generating means that generates energy to discharge the solution from the nozzle. The number of the liquid discharge sections corresponds to the number of probe types to be formed. The nozzles are two-dimensionally arranged. Using this liquid discharging device, probe liquids are discharged from the corresponding reservoirs onto a solid-phase substrate to form a predetermined two-dimensional probe array of high-purity probes on the substrate. This process exhibits high reproducibility and processability, and the resulting probe array has high array density.
摘要:
A liquid discharging device includes a plurality of liquid discharge sections. Each liquid discharge section includes a reservoir, a nozzle that discharges a solution supplied from the reservoir, and discharge energy generating means that generates energy to discharge the solution from the nozzle. The number of the liquid discharge sections corresponds to the number of probe types to be formed. The nozzles are two-dimensionally arranged. Using this liquid discharging device, probe liquids are discharged from the corresponding reservoirs onto a solid-phase substrate to form a predetermined two-dimensional probe array of high-purity probes on the substrate. This process exhibits high reproducibility and processability, and the resulting probe array has high array density.
摘要:
A liquid discharging device includes a plurality of liquid discharge sections. Each liquid discharge section includes a reservoir, a nozzle that discharges a solution supplied from the reservoir, and discharge energy generating means that generates energy to discharge the solution from the nozzle. The number of the liquid discharge sections corresponds to the number of probe types to be formed. The nozzles are two-dimensionally arranged. Using this liquid discharging device, probe liquids are discharged from the corresponding reservoirs onto a solid-phase substrate to form a predetermined two-dimensional probe array of high-purity probes on the substrate. This process exhibits high reproducibility and processability, and the resulting probe array has high array density.
摘要:
A method for screening presence or absence of a variation in a region of a nucleic acid which comprises the steps of (a) preparing a sample containing a test nucleic acid corresponding to the region, (b) preparing a probe having a base sequence fully complementary to a normal sequence of the region, and a plurality of probes each having at least one base not complementary to the normal sequence, (c) fixing the probes in separate regions on a surface of a substrate to prepare a DNA array substrate, (d) reacting the test nucleic acid with the probes on the DNA array substrate, (e) measuring signals in each region where the signals are originated from respective hybrids formed between the test nucleic acid and one of the probes, and (f) calling variation in the test nucleic acid using a pattern of total signals of all regions.
摘要:
To provide a method of efficiently removing excitation light in a device for measuring fluorescence emitted from samples on a measuring surface of a substrate while illuminating the samples with excitation light.The method is a fluorometry characterized in that an excitation light illumination portion where the samples are illuminated with the excitation light and a light detecting portion where measurements are made of the fluorescence are placed in such a manner as to make it possible to prevent the excitation light from approaching the light detecting portion, and measurements of the fluorescence emitted from the samples on the measuring surface of the substrate are made in such a manner as to relatively move the samples from the excitation light illumination portion to the light detecting portion after illuminating the same with the excitation light.
摘要:
A novel pyrylium compound is represented by the general formula (I): wherein X is oxygen or sulfur, Y− is a monovalent anion, n is an integer of 2 or 3, and M is hydrogen or an alkali metal. This pyrylium compound functions as a labeling agent by intermolecular bonding to nucleic acids, and as a fluorescence label having a chemical bond with the nucleic acids and an excitation wavelength in a visible light region.
摘要:
A probe array comprises a plurality of probes immobilized at a plurality of matrix sites on a substrate for capturing a target substance, wherein the probes are sequentially synthesized at the matrix sites on the substrate until a desired length, the probes are different from each other, and a labeling compound is coupled to each terminus of the probes in a final step of the synthesis. The probe array of the invention allows sensitive and reliable detection of the target substance. A method of evaluating the amount of the fully synthesized probes at respective matrix sites is also provided.
摘要:
Provided is a method for performing a hybridization reaction that comprises the steps of providing a sample containing a target single-stranded nucleic acid and a probe array; heat-denaturing the probe array in a solution containing the sample; and reducing temperature to the extent suitable for a double-strand formation reaction, wherein the probe array remains immersed in the sample solution during reducing the temperature. Also disclosed is a method for detecting a certain sequence in a sample.
摘要:
Provided is a method of spotting a probe densely and efficiently on a surface of a solid support. A liquid containing a probe is attached to a solid support as droplets to form spots containing the probe on the solid support by an ink jet method.
摘要:
A method for screening presence or absence of a variation in a region of a nucleic acid which comprises the steps of (a) preparing a sample containing a test nucleic acid corresponding to the region, (b) preparing a probe having a base sequence fully complementary to a normal sequence of the region, and a plurality of probes each having at least one base not complementary to the normal sequence, (c) fixing the probes in separate regions on a surface of a substrate to prepare a DNA array substrate, (d) reacting the test nucleic acid with the probes on the DNA array substrate, (e) measuring signals in each region where the signals are originated from respective hybrids formed between the test nucleic acid and one of the probes, and (f) calling variation in the test nucleic acid using a pattern of total signals of all regions.