Abstract:
Circuits and methods for compensating mismatches in sense amplifiers are disclosed. In one example, a circuit is disclosed. The circuit includes: a first branch, a second branch, a first plurality of trimming transistors and a second plurality of trimming transistors. The first branch comprises a first transistor, a second transistor, and a first node coupled between the first transistor and the second transistor. The second branch comprises a third transistor, a fourth transistor, and a second node coupled between the third transistor and the fourth transistor. The first node is coupled to respective gates of the third transistor and the fourth transistor. The second node is coupled to respective gates of the first transistor and the second transistor. The first plurality of trimming transistors is coupled to the second transistor in parallel. The second plurality of trimming transistors is coupled to the fourth transistor in parallel.
Abstract:
A testing device for memory includes a memory array and a test apparatus. The test apparatus includes a controller and a pattern generator. The pattern generator generates a background data, a first pattern data, and a second pattern data. The controller sets up the background data to a to-be-tested memory sub-array of the memory sub-arrays, performs a first memory test operation with the to-be-tested memory sub-array according to the first pattern data for detecting whether the hardware failure of the to-be-tested memory sub-array is occurred during the first memory test operation. The controller performs a second memory test operation with the to-be-tested memory sub-array according to the second pattern data for detecting whether the hardware failure of the to-be-tested memory sub-array is occurred during the second memory test operation in response to the hardware failure of the to-be-tested memory sub-array is not occurred during the first memory test operation.
Abstract:
A memory has magnetic tunnel junction elements with different resistances in different logic states, for bit positions in memory words accessed by a word line signal coupling each bit cell in the addressed word between a bit line and source line for that bit position. The bit lines and source lines are longer and shorter at different word line locations, causing a resistance body effect. A clamping transistor couples the bit line to a sensing circuit when reading, applying a current through the bit cell and producing a read voltage compared by the sensing circuit to a reference such as a comparable voltage from a reference bit cell circuit having a similar structure. A drive control varies an input to the switching transistor as a function of the word line location, e.g., by word line address, to offset the different bit and source line resistances.
Abstract:
A testing device for memory includes a memory array and a test apparatus. The test apparatus includes a controller and a pattern generator. The pattern generator generates a background data, a first pattern data, and a second pattern data. The controller sets up the background data to a to-be-tested memory sub-array of the memory sub-arrays, performs a first memory test operation with the to-be-tested memory sub-array according to the first pattern data for detecting an occurrence of a hardware failure of the to-be-tested memory sub-array is occurred during the first memory test operation. The controller performs a second memory test operation with the to-be-tested memory sub-array according to the second pattern data for detecting the occurrence of the hardware failure of the to-be-tested memory sub-array during the second memory test operation in response to the hardware failure of the to-be-tested memory sub-array is not occurred during the first memory test operation.
Abstract:
A method of fabricating a resistive memory array includes forming a plurality of insulators and a conductive structure on a first substrate, performing a resistor-forming process to transform the insulators into a plurality of resistors, polishing the conductive structure to expose a plurality of contact points respectively electrically connected to the resistors, providing a second substrate having a plurality of transistors and a plurality of interconnect pads, bonding respectively the interconnect pads and the contact points, and removing the first substrate from the resistors and the conductive structure.
Abstract:
A circuit that includes a current source module, a current sink module and a memory bank is disclosed. Each of the current source module, the current sink module and the memory bank is connected to the first bit/source line and the second bit/source line. The memory bank is bounded by the current source module and the current sink module. When the current source module and the current sink module receive a triggering pulse from the first bit/source line and a select signal with a first state, the current source module is activated to generate an operating current to the first bit/source line that transmits through a conducted memory cell of the memory bank and the current sink module is activated to drain the operating current from the second bit/source line.
Abstract:
A memory device is provided and includes multiple memory cells, multiple reference cells, and multiple sense amplifiers. The memory cells are coupled to first inputs of the sense amplifiers, respectively. The reference cells are coupled to second inputs of the sense amplifiers, respectively. The reference cells are coupled to each other.
Abstract:
The present disclosure describes an adjustment circuit that can be used, for example, in a memory system with partitioned memory blocks. The adjustment circuit can include a controller circuit, a timer circuit, and a temperature adaptive reference (TAR) generator. The controller circuit can be configured to output a control signal that indicates a memory type (e.g., code memory or data memory) associated with a partitioned memory block. The timer circuit can be configured to output a timing signal for a read memory operation based on the control signal. And, the TAR generator can be configured to adjust a verify reference current for a verify memory operation based on temperature, where the verify reference current is set based on the control signal.
Abstract:
A memory device includes a plurality of sense amplifiers, a plurality of memory cells, a plurality of data lines, a plurality of reference cells, and a connection line. The memory cells are coupled to a plurality of first inputs of the plurality of sense amplifiers respectively. The data lines are coupled to a plurality of second inputs of the plurality of sense amplifiers respectively. The reference cells are arranged in a plurality of columns respectively and coupled to the plurality of data line respectively. Each of the plurality of reference cells includes a plurality of resistive elements. The connection line is coupled to the plurality of data lines. In a read mode, one of the sense amplifiers is configured to access the plurality of resistive elements arranged in at least one of the plurality of columns.
Abstract:
Circuits and methods for compensating mismatches in sense amplifiers are disclosed. In one example, a circuit is disclosed. The circuit includes: a first branch, a second branch, a first plurality of trimming transistors and a second plurality of trimming transistors. The first branch comprises a first transistor, a second transistor, and a first node coupled between the first transistor and the second transistor. The second branch comprises a third transistor, a fourth transistor, and a second node coupled between the third transistor and the fourth transistor. The first node is coupled to respective gates of the third transistor and the fourth transistor. The second node is coupled to respective gates of the first transistor and the second transistor. The first plurality of trimming transistors is coupled to the second transistor in parallel. The second plurality of trimming transistors is coupled to the fourth transistor in parallel.