Abstract:
A trimming process for setting a reference current used in operating an MRAM module comprising an operational MRAM cell coupled to a bit line, multiple reference MRAM cells coupled to a reference bit line, and a sense amplifier coupled to the bit line and the reference bit line is disclosed in some embodiments. The process includes applying a bit line reference voltage to the reference bit line to provide a reference cell current formed by a sum of respective currents through the plurality of reference MRAM cells. The reference cell current is detected. A determination is made as to whether the detected reference cell current differs from a target reference cell current. The bit line reference voltage is varied, or a sensing ratio of the sense amplifier is varied, if it is determined that the detected reference cell current differs from the target reference cell current.
Abstract:
Some embodiments relate to a system that includes write circuitry, read circuitry, and comparison circuitry. The write circuitry is configured to attempt to write an expected multi-bit word to a memory location in a memory device. The read circuitry is configured to read an actual multi-bit word from the memory location. The comparison circuitry is configured to compare the actual multi-bit word read from the memory location with the expected multi-bit word which was previously written to the memory location to distinguish between a number of erroneous bits in the actual multi-bit word and a number of correct bits in the actual multi-bit word. The write circuitry is further configured to re-write the number of erroneous bits to the memory location without attempting to re-write the number of correct bits to the memory location.
Abstract:
A memory has magnetic tunnel junction elements with different resistances in different logic states, for bit positions in memory words accessed by a word line signal coupling each bit cell in the addressed word between a bit line and source line for that bit position. The bit lines and source lines are longer and shorter at different word line locations, causing a resistance body effect. A clamping transistor couples the bit line to a sensing circuit when reading, applying a current through the bit cell and producing a read voltage compared by the sensing circuit to a reference such as a comparable voltage from a reference bit cell circuit having a similar structure. A drive control varies an input to the switching transistor as a function of the word line location, e.g., by word line address, to offset the different bit and source line resistances.
Abstract:
A method of fabricating a resistive memory array includes forming a plurality of insulators and a conductive structure on a first substrate, performing a resistor-forming process to transform the insulators into a plurality of resistors, polishing the conductive structure to expose a plurality of contact points respectively electrically connected to the resistors, providing a second substrate having a plurality of transistors and a plurality of interconnect pads, bonding respectively the interconnect pads and the contact points, and removing the first substrate from the resistors and the conductive structure.
Abstract:
Some embodiments relate to a system that includes write circuitry, read circuitry, and comparison circuitry. The write circuitry is configured to attempt to write an expected multi-bit word to a memory location in a memory device. The read circuitry is configured to read an actual multi-bit word from the memory location. The comparison circuitry is configured to compare the actual multi-bit word read from the memory location with the expected multi-bit word which was previously written to the memory location to distinguish between a number of erroneous bits in the actual multi-bit word and a number of correct bits in the actual multi-bit word. The write circuitry is further configured to re-write the number of erroneous bits to the memory location without attempting to re-write the number of correct bits to the memory location.
Abstract:
A circuit that includes a current source module, a current sink module and a memory bank is disclosed. Each of the current source module, the current sink module and the memory bank is connected to the first bit/source line and the second bit/source line. The memory bank is bounded by the current source module and the current sink module. When the current source module and the current sink module receive a triggering pulse from the first bit/source line and a select signal with a first state, the current source module is activated to generate an operating current to the first bit/source line that transmits through a conducted memory cell of the memory bank and the current sink module is activated to drain the operating current from the second bit/source line.
Abstract:
A method of fabricating a resistive memory array includes forming a plurality of insulators and a conductive structure on a first substrate, performing a resistor-forming process to transform the insulators into a plurality of resistors, polishing the conductive structure to expose a plurality of contact points respectively electrically connected to the resistors, providing a second substrate having a plurality of transistors and a plurality of interconnect pads, bonding respectively the interconnect pads and the contact points, and removing the first substrate from the resistors and the conductive structure.
Abstract:
A circuit that includes a current source module, a current sink module and a memory bank is disclosed. Each of the current source module, the current sink module and the memory bank is connected to the first bit/source line and the second bit/source line. The memory bank is bounded by the current source module and the current sink module. When the current source module and the current sink module receive a triggering pulse from the first bit/source line and a select signal with a first state, the current source module is activated to generate an operating current to the first bit/source line that transmits through a conducted memory cell of the memory bank and the current sink module is activated to drain the operating current from the second bit/source line.
Abstract:
Some aspects of the present disclosure relate a method. The method attempts to write an expected multi-bit word to a memory location in memory. After writing of the multi-bit word has been attempted, an actual multi-bit word is read from the memory location. The actual multi-bit word is then compared with the expected multi-bit word to identify a number of erroneous bits and a number of correct bits stored in the memory location. The number of erroneous bits is re-written to the memory location without attempting to re-write the correct bits to the memory location.
Abstract:
A word line driver circuit includes a first transistor having its gate coupled to a first node configured to receive a word line select signal. A second transistor has its gate coupled to the first node and a drain coupled to a drain of the first transistor at a second node that is coupled to a word line. A word line assist control circuit is coupled to the first node, to the word line, and to a gate of a third transistor. The word line assist control circuit is configured to turn on or turn off the third transistor to adjust a voltage of the word line.