摘要:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device has a source region and a drain region in a substrate, a gate structure and a metallic line. The source region surrounds the drain region in the substrate. The gate structure is disposed on the substrate, and disposed between the source region and the drain region. The gate structure surrounds the drain region. The metallic line is located above the source and drain regions and the gate structure and electrically connected to the drain region or the source region. The source region includes a doped region having a break region located between two opposite ends of the doped region. The metallic line extends from the drain region, across the gate structure and across the break region and beyond the source region.
摘要:
A semiconductor device includes a first a first transistor configured to operate at a first threshold voltage level. The first transistor includes a first gate structure and a first drain terminal electrically coupled to the first gate structure. The semiconductor device also includes a second transistor configured to operate at a second threshold voltage level different from the first threshold voltage level. The second transistor includes a second source terminal and a second gate structure electrically coupled to the first gate structure. The first gate structure and the second gate structure comprise a first component in common, and the second gate structure further includes at least one extra component disposed over the first component. The number of the at least one extra component is determined by a desired voltage difference between the first threshold voltage level and the second threshold voltage level.
摘要:
Some embodiments of the present disclosure provide a semiconductor device. The semiconductor device includes a first transistor configured to include a first threshold voltage level. The first transistor includes a gate structure. The gate structure includes a first component including a first conductive type. A second transistor configures to include a second threshold voltage level different from the first threshold voltage level. The second transistor includes a gate structure. The gate structure includes a second component including the first conductive type. At least one extra component is disposed over the second component. The least one extra component includes a second conductive type opposite to the first conductive type. The first transistor and the second transistor are coupled such that the number of the least one extra component is determined by a desired voltage difference between the first threshold voltage level and the second threshold voltage level.
摘要:
A semiconductor structure includes a semiconductor substrate having a first portion and a second portion. A first Fin field-effect transistor (FinFET) is formed over the first portion of the semiconductor substrate, wherein the first FinFET includes a first fin having a first fin height. A second FinFET is formed over the second portion of the semiconductor substrate, wherein the second FinFET includes a second fin having a second fin height different from the first fin height. A top surface of the first fin is substantially level with a top surface of the second fin. A punch-through stopper is underlying and adjoining the first FinFET, wherein the punch-through stopper isolates the first fin from the first portion of the semiconductor substrate.
摘要:
A semiconductor structure includes a semiconductor substrate having a first portion and a second portion. A first Fin field-effect transistor (FinFET) is formed over the first portion of the semiconductor substrate, wherein the first FinFET includes a first fin having a first fin height. A second FinFET is formed over the second portion of the semiconductor substrate, wherein the second FinFET includes a second fin having a second fin height different from the first fin height. A top surface of the first fin is substantially level with a top surface of the second fin. A punch-through stopper is underlying and adjoining the first FinFET, wherein the punch-through stopper isolates the first fin from the first portion of the semiconductor substrate.
摘要:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device has a source region and a drain region in a substrate, a gate structure and a metallic line. The source region surrounds the drain region in the substrate. The gate structure is disposed on the substrate, and disposed between the source region and the drain region. The gate structure surrounds the drain region. The metallic line is located above the source and drain regions and the gate structure and electrically connected to the drain region or the source region. The source region includes a doped region having a break region located between two opposite ends of the doped region. The metallic line extends from the drain region, across the gate structure and across the break region and beyond the source region.
摘要:
A method of performing an ultraviolet (UV) curing process on an interfacial layer over a semiconductor substrate, the method includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas. The method further includes heating the interfacial layer at a temperature less than or equal to 700° C. Another method of performing an annealing process on an interfacial layer over a semiconductor substrate, the second method includes supplying a gas flow rate ranging from 10 sccm to 5 slm, wherein the gas comprises inert gas. The method further includes heating the interfacial layer at a temperature less than or equal to 600° C.
摘要:
A semiconductor structure includes a semiconductor substrate. The semiconductor structure further includes an interfacial layer over the semiconductor substrate, the interfacial layer having a capacitive effective thickness of less than 1.37 nanometers (nm). The semiconductor structure further includes a high-k dielectric layer over the interfacial layer.