摘要:
The probe tip movement control method of the scanning probe microscope is used for a scanning probe microscope provided with a cantilever 21 having a probe tip 20 facing a sample 12. The atomic force occurring between the probe tip and sample is measured when the probe tip scans the surface of the sample. X-, Y-, and Z-fine movement mechanisms 23, 29, and 30 are used to relatively change the positions of the probe tip and sample. It is possible to maintain a high measurement accuracy and enable scan movement of a probe tip on a sample surface by simple control when measuring a part having a gradient in measurement of an uneven shape on a sample surface.
摘要:
A scanning probe microscope has an XY scanner for making a probe scan a sample surface, an approach and separate drive element for making the probe approach to the sample surface at a sampling position and separate the probe from the sample surface during movement between the sampling positions, and a servo controller for holding the distance between the probe and the sample surface at a reference distance during measurement at the sampling position. A plurality of scattered measurement locations are set away from each other as sampling positions. The approach and separation movements are performed at each sampling position. When measuring the surface by the probe at a sampling position and while making the probe move between sampling positions, servo control by the servo controller is continued. This makes it possible to quickly measure the surface by a simple controller and possible to measure a wide area or measure a high aspect ratio. When making the probe approach to the sample surface for measurement at the sampling position, it is also possible to cause a scan motion for tandem movement at an equal speed and in the same direction as the scan motion by the XY scanner.
摘要:
A scanning probe microscope, capable of performing shape measurement not affected by electrostatic charge distribution of a sample, which: monitors an electrostatic charge state by detecting a change in a flexure or vibrating state of a cantilever due to electrostatic charges in synchronization with scanning during measurement with relative scanning between the probe and the sample, and makes potential adjustment so as to cancel an influence of electrostatic charge distribution, thus preventing damage of the probe or the sample due to discharge and achieving reduction in measurement errors due to electrostatic charge distribution.
摘要:
A scanning probe microscope has a cantilever with a probe facing a sample and a measurement section for measuring a physical quantity occurring between the probe and the sample when the probe scans a surface of the sample, holding the physical quantity constant to measure the surface of the sample. The above microscope further has a probe tilt mechanism, an optical microscope etc. for detecting a position of the probe when the probe is tilted, and a control section for setting the probe in a first tilt posture and second tilt posture, measuring a surface of the sample by the measurement section at each tilt posture, detecting the position of the probe at least at the second tilt posture by the optical microscope etc., and making a measurement location at the second tilt posture match with a measurement location at the first tilt posture for measurement.
摘要:
A scanning probe microscope, capable of performing shape measurement not affected by electrostatic charge distribution of a sample, which: monitors an electrostatic charge state by detecting a change in a flexure or vibrating state of a cantilever due to electrostatic charges in synchronization with scanning during measurement with relative scanning between the probe and the sample, and makes potential adjustment so as to cancel an influence of electrostatic charge distribution, thus preventing damage of the probe or the sample due to discharge and achieving reduction in measurement errors due to electrostatic charge distribution.
摘要:
A measurement method of a scanning probe microscope including a first approach operation adjusting an operation position of a fine positioning unit to near a maximum extension amount and ending the approach by coarse positioning, a first measurement operation making the probe scan the surface for measurement in a close probe state based on the first approach operation to obtain relief information of the sample surface, a positioning operation positioning the probe at a recessed part based on the relief information obtained by the first measurement operation, a second approach operation making the probe again approach the surface at a position determined by the positioning operation, adjusting an operation position of the Z-axis fine positioning device to close to a maximum extension amount, and ending the repeated approach, and a second measurement operation making the probe scan the surface for measurement in a close probe state based on the second approach operation to obtain relief information of the sample surface.
摘要:
A scanning probe microscope provided with a cantilever 21 having a probe 20 facing a sample 12, a measurement unit 24 measuring a physical quantity occurring between the probe and sample, and movement mechanisms 11, 29 changing a positional relationship between the probe and sample to cause a scanning operation and making the probe scan the surface of the sample by the movement mechanism and measure the surface of the sample by the measurement unit. This method is provided with a step of feeding the probe in a direction along the surface of the sample at a position separate from the surface at certain distances, a step of making the probe approach the sample at each of a plurality of measurement points determined at certain distances and perform measurement to obtain measurement values, then retract, and a step setting a measurement point at a position between a certain measurement point and next measurement point for measurement when a difference between a measurement value at the certain measurement point and a measurement value at the next measurement point is larger than a reference value.
摘要:
A fine movement mechanism unit is configured by a supporting member, two fixed sections fixed to this supporting member, two pairs of parallel-plate flexural sections disposed between the two fixed sections, an X fine movement mechanism, a Y fine movement mechanism, and a Z fine movement mechanism. The X fine movement mechanism has an X moving section movable in an X direction, connected to each of the two fixed sections through the two pairs of parallel-plate flexural sections, and two X direction piezoelectric actuators causing the X moving section to move. The Y fine movement mechanism arranged to the X moving section, has other two pairs of parallel-plate flexural sections, a Y moving section movable in the Y direction, connected to the X moving section through the other two pairs of parallel-plate flexural sections, and two Y direction piezoelectric actuators causing the Y moving section to move relatively to the X moving section. The Z fine movement mechanism arranged to the Y moving section, has a Z moving section movable in a Z direction perpendicular to both of the X and Y directions, and a Z direction piezoelectric actuator causing the Z moving section to move.
摘要:
With a scanning probe microscope, if a plurality of sample properties are measured using a scanning scheme of allowing a probe to approach and withdraw from a sample, the sample properties need to be accurately and reliably detected in the minimum required measurement time. Further, the acting force between the probe and the sample varies depending on the type of the probe and the wear condition of a probe tip. Thus, disadvantageously, property values acquired using different probes cannot be compared with one another unless the artifactual effect of the measuring probes are eliminated. In accordance with the present invention, with a scanning probe microscope, the probe is brought into intermittent contact with the sample, while driving means repeatedly allows the probe to approach and withdraw from the sample with a variable amplitude. The sample property is thus acquired at a high speed. Further, a calibration sample is used in a given environment (given temperature and humidity) to acquire a force curve for at least one point. Information obtained from the force curve is used to correct measurements to display the distribution of the sample property.
摘要:
A probe is made by attaching a carbon nanotube 12 to a mounting base end 13, which eliminates the effects of a carbon contamination film, to increase the bonding strength, increase the conductivity of the probe, and strengthen the bonding performance thereof by coating the entire circumference of the nanotube and the base with a coating film, rather than coating just one side. The work of mounting the carbon nanotube and mounting base end are performed under observation by a microscope. Further, the carbon contamination film 14 formed by an electron microscope is stripped off at a stage before bonding by the coating film.