摘要:
A method of manufacturing an improved bipolar transistor or BiCMOS having a phosphorus-doped polysilicon emitter electrode is disclosed. The method comprises forming an emitter electrode wherein a phosphorus-doped amorphous silicon film is deposited at temperature not higher than 540.degree. C. and then subjected to low temperature annealing treatment at a temperature of 600.degree. C. to 750.degree. C., under which the amorphous silicon is converted to a polysilicon and the phosphorus present in the amorphous silicon film is diffused into a base region to form an emitter region, followed by high temperature/short time annealing treatment at a temperature of 900.degree. C. to 950.degree. C. so that an activation rate of an impurity in a boron-doped polysilicon base electrode or source-drain regions of MOS.cndot.FET is improved.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the first polycrystalline silicon layer has a positive temperature dependence of resistance while the second polycrystalline layer has a negative temperature dependence of resistance, or vice versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the first polycrystalline silicon layer has a positive temperature dependence of resistance while the second polycrystalline silicon layer has a negative temperature dependence of resistance, or vice versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the first polycrystalline silicon layer has a positive temperature dependence of resistance while the second polycrystalline layer has a negative temperature dependence of resistance, or vice versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the polycrystalline first silicon layer has a positive in temperature dependence of resist while the second polycrystalline layer has a negative temperature dependence of resistance, or vice versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the first polycrystalline silicon layer has a positive temperature dependence of resistance while the second polycrystalline silicon layer has a negative temperature dependence of resistance, or vice versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the first polycrystalline silicon layer has a positive temperature dependence of resistances while the second polycrystalline layer has a negative temperature dependance of resistance, or vise versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
The present invention provides a polycrystalline silicon conducting structure (e.g., a resistor) whose resistance value is controlled, and can be less variable and less dependent on temperature with respect to any resistant value, and a process of producing the same. Use is made of at least a two-layer structure including a first polycrystalline silicon layer of large crystal grain size and a second polycrystalline silicon layer of small crystal grain size, and the first polycrystalline silicon layer has a positive temperature dependence of resistance while the second polycrystalline silicon layer has a negative temperature dependence of resistance, or vice versa. Moreover, the polycrystalline silicon layer of large grain size can be formed by high dose ion implantation and annealing, or by depositing the layers by chemical vapor deposition at different temperatures so as to form large-grain and small-grain layers.
摘要:
A challenge to be met by the present invention is to provide an electronic component mounting apparatus and an electronic component mounting method that enable a reduction in the frequency of operation required with switching of a component type, to thus enhance productivity.In component mount operation for taking chips of component types A, B, and C out of a component supply portion by means of a single mount head and mounting the chips on two substrates held by a first lane and a second lane, when a subsequently-carried-in subsequent substrate has come to be able to undergo component mount operation before completion of processing pertaining to a preceding substrate mount process in which component mount operation is carried out on a previously-carried-in preceding substrate among a plurality of substrates, processing pertaining to a subsequent substrate mount process is started by taking, as mount start components, chips already serving as targets of component mount operation for the preceding substrate at this timing, and processing pertaining to the preceding substrate mount process during which mounting is not yet completed is continually carried out. Thereby, the frequency of operation required with switching of a component type, such as replacement of a nozzle, can be reduced.
摘要:
An aspect of the invention provides a motor that comprises: a stator including multiple motor coils; multiple bus rings configured to distribute currents of different phases to the motor coils; and a ring-shaped bus ring holder in which multiple holding grooves configured to hold the respective bus rings are formed, wherein: each of the motor coils includes an insulator around which a wound wire is wound; the insulator includes an outer flange formed at an outer side of the wound wire in a radial direction of the motor and extending in an axial direction of the motor; and the bus ring holder is arranged at an outer side of the outer flange in the radial direction of the motor, and contiguous to the outer flange.