摘要:
The body of a micromachine has a plurality of energy-power converting means for receiving different forms of energy including rays, microwaves and sound waves and converting the different forms of energy to electric power, i.e., photoelectromotive devices, a microwave-power converter and an acousto-electromotive device. The electric power obtained by these means is supplied to a drive system and an operation system incorporated in the machine body.
摘要:
A method of fabricating a three-dimensionally shaped photovoltaic device involves first forming a photovoltaic element on a flexible substrate, preferably while it is flat, and then deforming the substrate to achieve the three-dimensional shape. Preferably a crystalline photovoltaic conversion layer is first formed on the flat substrate, then the layer is cut or divided while leaving the substrate uncut to form a plurality of separate adjacent photovoltaic elements on the substrate, and finally the substrate is deformed into the three-dimensional shape. The cutting can be carried out by laser irradiation. The deforming can be carried out by providing a shape memory member as the substrate, or bonding a shape memory member onto the substrate, and then restoring the shape memory member to its previously memorized three-dimensional shape. The adjacent photovoltaic elements can be electrically interconnected in series with each other by applying bond wires or an insulating film and then a conducting film in the cut regions between adjacent photovoltaic elements.
摘要:
An organic electroluminescent device comprises a plurality of stacked layers of polymeric materials soluble in an organic solvent. As a polymeric material forming a lower layer, a polymeric material is selected having a molecular weight greater than the molecular weight of a polymeric material of a layer to be formed on the lower layer. As an organic solvent for dissolving the polymeric material forming the lower layer, an organic solvent is selected having a dielectric constant greater than the dielectric constant of an organic solvent for dissolving the polymeric material forming an upper layer. With a light emitting layer being the lower layer and an electron transport layer being the upper layer, it is preferable that the electron transport layer includes a polymeric material having hole blocking property. With a light emitting layer being the lower layer and an electron transport layer being the upper layer, it is preferable that the repeating unit of the polymeric material forming the light emitting layer and the repeating unit of the polymeric material forming the electron transport layer include the same chemical structure.
摘要:
An organic electroluminescent device comprises a plurality of stacked layers of polymeric materials soluble in an organic solvent. As a polymeric material forming a lower layer, a polymeric material is selected having a molecular weight greater than the molecular weight of a polymeric material of a layer to be formed on the lower layer. As an organic solvent for dissolving the polymeric material forming the lower layer, an organic solvent is selected having a dielectric constant greater than the dielectric constant of an organic solvent for dissolving the polymeric material forming an upper layer. With a light emitting layer being the lower layer and an electron transport layer being the upper layer, it is preferable that the electron transport layer includes a polymeric material having hole blocking property. With a light emitting layer being the lower layer and an electron transport layer being the upper layer, it is preferable that the repeating unit of the polymeric material forming the light emitting layer and the repeating unit of the polymeric material forming the electron transport layer include the same chemical structure.
摘要:
A hole injection electrode of a transparent conductive film such as indium-zinc-oxide is formed on a substrate, and a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are formed in this order on the hole injection electrode. Then, an electron injection electrode made of a material such as aluminum is formed on the electron transport layer. The hole injection layer is made for example of fluorocarbon (CFx). The thickness of the hole injection layer is preferably in the range from 30 Å to 90 Å.