摘要:
A temperature sensor includes temperature detecting means and at least one of a catalyst and an adsorbent applied to the surface of the temperature detecting means. At least one of the catalyst and the adsorbent catalyzes an exothermic reaction of a reactant in gas on the temperature detecting means. A temperature that is increased by the exothermic reaction is detected by the temperature detecting means. The catalytic efficiency for the exothermic reaction of at least one of the catalyst and the adsorbent is reduced by sulfur poisoning. The temperature sensor is disposed upstream of an exhaust purification system. Accordingly, it is determined that the temperature sensor is subjected to sulfur poisoning if the temperature detected by the temperature sensor is below a prescribed temperature.
摘要:
A temperature sensor includes temperature detecting means and at least one of a catalyst and an adsorbent applied to the surface of the temperature detecting means. At least one of the catalyst and the adsorbent catalyzes an exothermic reaction of a reactant in gas on the temperature detecting means. A temperature that is increased by the exothermic reaction is detected by the temperature detecting means. The catalytic efficiency for the exothermic reaction of at least one of the catalyst and the adsorbent is reduced by sulfur poisoning. The temperature sensor is disposed upstream of an exhaust purification system. Accordingly, it is determined that the temperature sensor is subjected to sulfur poisoning if the temperature detected by the temperature sensor is below a prescribed temperature.
摘要:
The exhaust purification system of an internal combustion engine is provided with an NOX selective reduction catalyst which is arranged in an engine exhaust passage and which has the function of absorbing NOX which is contained in exhaust gas when an air-fuel ratio of inflowing exhaust gas is lean, releasing the absorbed NOX when the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or rich, and selectively reducing the NOX and with a fuel addition valve which feeds fuel to the NOX selective reduction catalyst. In the case of the region near the stoichiometric air-fuel ratio in the region where the air-fuel ratio of the exhaust gas flowing into the NOX selective reduction catalyst is lean, the fuel addition valve is used to feed fuel to the NOX selective reduction catalyst to selectively reduce the NOX.
摘要:
An exhaust purification system is provided with an NOx storage reduction catalyst arranged in an exhaust passage and an SOx trap material arranged upstream of the NOx storage reduction catalyst and removes SOx contained in exhaust gas. A main flow path has a secondary flow path connected to it. In the secondary flow path, a removal device is arranged for removing the sulfur constituent contained in fuel. The secondary flow path includes an opening and closing device. When the SOx removal rate of the SOx trap material becomes a predetermined removal rate judgment value or less or the concentration of the SOx which flows into the SOx trap material becomes a predetermined concentration judgment value or more, at least part of the fuel flowing through a main flow path is made to flow into the secondary flow path and run through the removal device.
摘要:
An exhaust purification system is provided with an NOx storage reduction catalyst arranged in an exhaust passage and an SOx trap material arranged upstream of the NOx storage reduction catalyst and removes SOx contained in exhaust gas. A main flow path has a secondary flow path connected to it. In the secondary flow path, a removal device is arranged for removing the sulfur constituent contained in fuel. The secondary flow path includes an opening and closing device. When the SOx removal rate of the SOx trap material becomes a predetermined removal rate judgment value or less or the concentration of the SOx which flows into the SOx trap material becomes a predetermined concentration judgment value or more, at least part of the fuel flowing through a main flow path is made to flow into the secondary flow path and run through the removal device.
摘要:
An electronic control unit executing an algorithm so as to operate an exhaust purification system of an engine. The algorithm (1) commences a regeneration treatment by causing an amount of fuel supplied to a combustion process of the engine to increase so as to change an air-fuel ratio of exhaust gas of the engine from a first lean air-fuel ratio to a set rich air-fuel ratio and (2) causes uncombusted fuel to be supplied to a NOx catalyst device during at least one of: a first period in which an air-fuel ratio of the exhaust gas within the NOx catalyst device changes from the first lean air-fuel ratio to the set rich air-fuel ratio when the regeneration treatment is started; and a second period after an air-fuel ratio of the exhaust gas within the NOx catalyst device becomes a ratio indicating completion of the regeneration treatment.
摘要:
An exhaust purification system of an internal combustion engine comprising an NOX holding material arranged in an engine exhaust passage, having a catalyst metal containing silver, holding NOX contained in the exhaust gas in the form of silver nitrate by the catalyst metal when an air-fuel ratio of inflowing exhaust gas is lean, and releasing the held NOX if the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or rich. The NOX holding material has a scatter temperature at which catalyst metal scatters in the form of silver nitrate if the temperature rises. When it is time to perform control raising the temperature of the NO holding material to the scatter temperature or above, the NOX held in the NOX holding material is released by making the air-fuel ratio of the exhaust gas flowing into the NO holding material the stoichiometric air-fuel ratio or rich.
摘要翻译:一种内燃机的排气净化系统,其包括设置在发动机排气通路中的NO x保持材料,具有含有银的催化剂金属,当空气燃料时,通过催化剂金属将含有硝酸银形式的废气中包含的NO x 流入废气的比例是稀的,如果流入的废气的空燃比变成理论空燃比,则释放保持的NOX。 如果温度升高,NO x保持材料具有散射温度,催化剂金属以硝酸银的形式散射。 当控制将NO保持材料的温度提高到散射温度以上时,通过使排气的空燃比流入NO保持材料而释放保持在NO X保持材料中的NOX 理论空燃比或浓度。
摘要:
An exhaust purification system of an internal combustion engine arranging in an engine exhaust passage an NOx storing reducing catalyst storing NOx contained in exhaust gas when an air-fuel ratio of inflowing exhaust gas is lean and reducing and purifying stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or rich, which system is provided with an NOx production reducing means for reducing an amount of production of NOx produced in a combustion chamber due to change of a combustion state of the engine and temporarily reduces the amount of production of NOx by the NOx production reducing means when an amount of N2O flowing out from the NOx storing reducing catalyst is anticipated to exceed an allowable amount.
摘要:
In an exhaust purification system of an internal combustion engine, comprising a NOX catalyst device, which can satisfactorily store NOX in the exhaust gas when the concentration of oxygen in the exhaust gas is high and can release the stored NOX and purify the released NOX to N2 by reducing materials in the exhaust gas when the concentration of oxygen is decreased as a regeneration treatment, the regeneration treatment is carried out to change a combustion air-fuel ratio from a lean air-fuel ratio to a set rich air-fuel ratio, and N2O reducing material is supplied to the NOX catalyst device during at least one of a first period set within a period in which an air-fuel ratio in the exhaust gas within said NOX catalyst device changes from the lean air-fuel ratio to the set rich air-fuel ratio when the regeneration treatment is started and a second period set within a period after an air-fuel ratio in the exhaust gas within the NOX catalyst device becomes the stoichiometric air-fuel ratio when the regeneration treatment is finished.
摘要:
The present detector for detecting sulfur components includes a storage portion for storing SOx and NOx in the exhaust gas passing through an exhaust passage, in which the more an amount of stored SOx increases, the more an amount of stored NOx decreases, and which does not release SOx but release NOx at a set temperature, and a temperature sensor, estimates the amount of stored SOx on the basis of a relationship between, after the storage portion becomes the set temperature by heating, a heating pattern of the storage portion and temperature change of the storage portion measured by the temperature sensor, and detects an integrated amount of SOx passing through the exhaust passage during a given period or an value on the basis of the integrated amount.