摘要:
A film forming process which imparts excellent formability, corrosion resistance and paintability to the surface of aluminum or aluminum alloy plates or aluminum-plated sheet steel.A process for forming composite film on the surface of aluminum or aluminum alloy plates which comprises preliminarily treating the surface with a chromating liquid to form a chromate film on the surface, and then coating on the chromate film an organic macromolecular resin composition comprising urethane resin and at least one kind of resin selected from polyester resin and epoxy resin, a wax as a lubricating additive and further a silica sol, followed by drying, to form a film layer.
摘要:
A lubricating paint including a resin mix, a lubricant additive and silica. The resin mix consists of a urethane resin with molecular weight of over 3,000 and an epoxy resin, with the solids of the urethane resin accounting for 50-97 wt % of the solids of the resin mix. The lubricant additive accounts for 2-40 wt % of all of the solids in the lubricating paint. The silica accounts for 5-100 wt % of all of the resin solids in the lubricating paint. The lubricating paint of the invention exhibits improved formability, corrosion resistance (rust resistance) and lubricity as compared with prior art paints. It also has improved weldability, stain resistance and chemical resistance.
摘要:
A bath for treating metal surfaces for the formation thereon of composite films for the cold working of metal advantageously comprises an otherwise conventional conversion coating bath that also contains organic cationic polymer having at least 1 cationic nitrogen atom per molecule and having a molecular weight of 1,000 to 1,000,000, or a salt of such a polymer. Major improvements in the lubrication properties, particularly in the seizure resistance, can be achieved by applying out a conventional lubrication treatment on such a composite film. Specifically, practical operating limits in metal cold working, e.g., the working degree or ratio, working speed, tool life, and the like, can be increased in a single step. This is useful in terms of improving productivity, product stability, cost reduction, and the like.
摘要:
The present invention relates to a laminate for battery encasement comprising aluminum foil and an inner layer, wherein a resin film layer that comprises an aminated phenol polymer (A), a trivalent chromium compound (B), and a phosphorus compound (C) lies between the aluminum foil and the inner layer. The laminate for battery encasement of the present invention is excellent in adhesiveness, gas impermeability, etc., and therefore can be suitably used as a material for encasing a secondary battery, particularly a lithium ion polymer secondary battery.
摘要:
Use of an aqueous composition, which has been prepared by dissolving (A) dihydroxypropylchitosan and (B) 1,2,3,4-butanetetracarboxylic acid (B) in an aqueous medium, makes it possible to provide articles excellent in hydrophilicity, antibacterial and deodorant activities, touch feeling, antifogging property, paper strength, dyeability, waterproofness, antifouling property and/or the like.
摘要:
There is provided an alkaline cleaning of aluminum alloy, in which the attained corrosion resistance is equal or superior to the acidic cleaning agent, and which mitigates the disadvantages of the acidic cleaning agent, such as corrosion of plant, processing of the waste liquid, and energy cost, and which attains improved productivity.The cleaning liquid from 0.5 to 40 g/L in total of one or more alkali builders selected from alkali metal hydroxide, alkali metal carbonate, inorganic alkali metal phosphate and alkali metal silicate, from 0.2 to 10 g/L of one or more of organic phosphonic acid and its salt (A), from 0.001 to 2 g/L of one or more metallic ions (B) selected from metallic ions having from 5.0 to 14.0 of stability constant with the organic phosphonic acid and its salt, and from 0.1 to 10 g/L of surfactant. Particularly, the weight ratio of (A):(B) is in a range of from 100:0.05˜20.
摘要:
[Problems] There is provided an alkaline cleaning of aluminum alloy, in which the attained corrosion resistance is equal or superior to the acidic cleaning agent, and which mitigates the disadvantages of the acidic cleaning agent, such as corrosion of plant, processing of the waste liquid, and energy cost, and which attains improved productivity. [Means for Solution] The cleaning liquid from 0.5 to 40 g/L in total of one or more alkali builders selected from alkali metal hydroxide, alkali metal carbonate, inorganic alkali metal phosphate and alkali metal silicate, from 0.2 to 10 g/L of one or more of organic phosphonic acid and its salt (A), from 0.001 to 2 g/L of one or more metallic ions (B) selected from metallic ions having from 5.0 to 14.0 of stability constant with the organic phosphonic acid and its salt, and from 0.1 to 10 g/L of surfactant. Particularly, the weight ratio of (A): (B) is in a range of from 100:0.05˜20.
摘要:
The present invention relates to a laminate for battery encasement comprising aluminum foil and an inner layer, wherein a resin film layer that comprises an aminated phenol polymer (A), an acrylic polymer (B), a phosphorus compound (C), and a zirconium compound (D) lies between the aluminum foil and the inner layer. The laminate for battery encasement of the present invention is excellent in adhesiveness, gas impermeability, etc., and therefore can be suitably used as a material for encasing a secondary battery, particularly a lithium ion polymer secondary battery.
摘要:
Water-based, substrate treatment compositions contain (A) at least one chitosan selected from chitosan and a chitosan derivative, and (B) a metal compound containing at least one metal selected from Ti, Zr, Hf, Mo, W, Se, Ce, Fe, Cu, Zn, V and trivalent Cr. In particular, the water-based, substrate treatment compositions can improve the interlayer adhesion between metal materials and resin coating layers such as films or coatings, and can also improve the corrosion resistance and solvent resistance of such metal materials.
摘要:
Water-based, substrate treatment compositions contain (A) at least one chitosan selected from chitosan and a chitosan derivative, and (B) a metal compound containing at least one metal selected from Ti, Zr, Hf, Mo, W, Se, Ce, Fe, Cu, Zn, V and trivalent Cr. In particular, the water-based, substrate treatment compositions can improve the interlayer adhesion between metal materials and resin coating layers such as films or coatings, and can also improve the corrosion resistance and solvent resistance of such metal materials.