摘要:
The present invention stably maintains contact between probe pins and a wafer. Screws are provided at a plurality of positions in an outer circumferential portion of a printed circuit board. On a lower surface side of the outer circumferential portion of the printed circuit board, a retainer plate is provided, and a bottom end surface of each of the screws is held down with the retainer plate. Turning each of the screws in a state where the bottom end surface of the each of the screws is held down with the retainer plate causes the outer circumferential portion of the printed circuit board to be moved up and down. Adjusting a height of the outer circumferential portion of the printed circuit board by turning each of the screws located at the plurality of positions enables parallelism of the entire probe card with respect to the wafer to be adjusted.
摘要:
In the present invention, an inspection contact structure is attached to a lower surface side of a circuit board of a probe card. The inspection contact structure has a silicon substrate, and sheets attached to upper and lower surfaces of the silicon substrate. Each of the sheets is elastic and has conductive portions in a projecting shape. The silicon substrate is formed with current-carrying paths passing through the substrate in a vertical direction so that the conductive portions of the sheets and the current-carrying paths of the silicon substrate are in contact with each other. The upper and lower sheets are fixed to the silicon substrate, and the sheet on the upper surface is fixed to a circuit board.
摘要:
It is an object of the present invention to conduct highly reliable inspection by adjusting a contactor of a probe card and an inspection object in a prober to a parallel state even if the contactor and the inspection object become not parallel to each other. The present invention is a probe card mounted in a prober via a holder, the probe card including: a contactor; a circuit board electrically connected to the contactor; a reinforcing member reinforcing the circuit board; and a parallelism adjustment mechanism adjusting a degree of parallelism between the contactor and an inspection object disposed in the prober.
摘要:
The present invention stably maintains contact between probe pins and a wafer. Screws are provided at a plurality of positions in an outer circumferential portion of a printed circuit board. On a lower surface side of the outer circumferential portion of the printed circuit board, a retainer plate is provided, and a bottom end surface of each of the screws is held down with the retainer plate. Turning each of the screws in a state where the bottom end surface of the each of the screws is held down with the retainer plate causes the outer circumferential portion of the printed circuit board to be moved up and down. Adjusting a height of the outer circumferential portion of the printed circuit board by turning each of the screws located at the plurality of positions enables parallelism of the entire probe card with respect to the wafer to be adjusted.
摘要:
The method is a method for positioning a three-layered rectangular frame-like anisotropic conductive connector in order to inspect the electrical properties of an object for inspection. The positioning is carried out in the following manner. The three-layered anisotropic conductive sheet is composed of a first anisotropic conductive sheet, a center substrate and a second anisotropic conductive sheet. Markings and through-holes are formed on the center substrate, and semi-transparent protrusions and through-holes are formed on each of the first anisotropic conductive sheet and the second anisotropic conductive sheet. The markings are identified through the semi-transparent protrusions by detecting means disposed on the side of the first anisotropic conductive sheet and the second anisotropic conductive sheet and thereby the positioning of the semi-transparent protrusions to the markings is carried out, whereby performing the positioning of the first anisotropic conductive sheet, the center substrate and the second anisotropic conductive sheet.
摘要:
In the present invention, an inspection contact structure is attached to a lower surface side of a circuit board of a probe card. The inspection contact structure has a silicon substrate, and sheets attached to upper and lower surfaces of the silicon substrate. Each of the sheets is elastic and has conductive portions in a projecting shape. The silicon substrate is formed with current-carrying paths passing through the substrate in a vertical direction so that the conductive portions of the sheets and the current-carrying paths of the silicon substrate are in contact with each other. The upper and lower sheets are fixed to the silicon substrate, and the sheet on the upper surface is fixed to a circuit board.
摘要:
Contact pressure between a wafer and a probe is maintained at an appropriate level. A probe card 2 has a contactor 11 for supporting a probe 10, a printed wiring board 13 electrically connected to the contactor 11, and a reinforcement member 14. On the upper surface side of the probe card 2 is provided a top plate 70 connected to the reinforcement member 14 by a connection member 80. A groove 90 is formed in the upper surface of the top plate 70, and a strain gauge 91 is attached at the groove 90. When a wafer W and the probe 10 are in contact with each other, an upward load acts on the probe card 2 by pressure caused by the contact, and the load causes strain in the top plate 70. The amount of the strain in the top plate 70 is measured, and contact pressure between the wafer W and the probe 10 is regulated and set based on the amount of the strain.
摘要:
A probe card installed in a probe device includes a supporting plate capable of supporting a contact body and a circuit board installed above a top surface of the supporting plate. A connection member is installed at a top surface of the circuit board and the supporting plate and the connection member are connected to each other by a connection body. Load control members are installed at a top surface of the connection member and capable of maintaining a contact load between the contact body and an object to be inspected at a constant level. Elastic members are installed at a peripheral portion of the connection member and capable of fixing a horizontal position of the supporting plate. An intermediate member is installed between the circuit board and the supporting plate and configured to elastically and electrically connect the circuit board and the supporting plate.
摘要:
A probe card installed in a probe device includes a supporting plate capable of supporting a contact body and a circuit board installed above a top surface of the supporting plate. A connection member is installed at a top surface of the circuit board and the supporting plate and the connection member are connected to each other by a connection body. Load control members are installed at a top surface of the connection member and capable of maintaining a contact load between the contact body and an object to be inspected at a constant level. Elastic members are installed at a peripheral portion of the connection member and capable of fixing a horizontal position of the supporting plate. An intermediate member is installed between the circuit board and the supporting plate and configured to elastically and electrically connect the circuit board and the supporting plate.
摘要:
Contact pressure between a wafer and a probe is maintained at an appropriate level. A probe card 2 has a contactor 11 for supporting a probe 10, a printed wiring board 13 electrically connected to the contactor 11, and a reinforcement member 14. On the upper surface side of the probe card 2 is provided a top plate 70 connected to the reinforcement member 14 by a connection member 80. A groove 90 is formed in the upper surface of the top plate 70, and a strain gauge 91 is attached at the groove 90. When a wafer W and the probe 10 are in contact with each other, an upward load acts on the probe card 2 by pressure caused by the contact, and the load causes strain in the top plate 70. The amount of the strain in the top plate 70 is measured, and contact pressure between the wafer W and the probe 10 is regulated and set based on the amount of the strain.