摘要:
A detector system, filter therefor, and method of making same is disclosed. The filter includes an interference element having a reflection band disposed primarily in the near infrared, and having a high transmission over most of the visible region. The filter also includes an absorptive element that absorbs light non-uniformly over the visible region. The filter when combined with a semiconductor photodiode or other suitable detector yields a detector system whose spectral responsivity closely matches the visual response of the human eye.
摘要:
A detector system, filter therefor, and method of making same is disclosed. The filter includes an interference element having a reflection band disposed primarily in the near infrared, and having a high transmission over most of the visible region. The filter also includes an absorptive element that absorbs light non-uniformly over the visible region. The filter when combined with a semiconductor photodiode or other suitable detector yields a detector system whose spectral responsivity closely matches the visual response of the human eye.
摘要:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.
摘要:
A backlight that includes a front reflector and a back reflector that form a hollow light recycling cavity including an output surface is disclosed. The backlight further includes one or more light sources disposed to emit light into the light recycling cavity. The front reflector includes an on-axis average reflectivity of at least 90% for visible light polarized in a first plane, and an on-axis average reflectivity of at least 25% but less than 90% for visible light polarized in a second plane perpendicular to the first plane.
摘要:
A backlight unit (10) has a hollow cavity (16) instead of employing a light guide. One or more light sources (24a-c), such as LEDs, are arranged to emit light into the cavity, which is formed by a front (12) and a back reflector (14). The backlight is typically of the edge-lit type. The backlight can have a large area, is thin and consists of fewer components than conventional devices. Its design permits light recycling. The unit emits light of a predefined polarisation and can be arranged to have desired horizontal/vertical viewing angle properties. Light is uniformly distributed within the guide and the light output (20b, 2Od) is substantially collimated. Such backlights occupy a specific region in a parameter space defined by two parameters: first, the ratio of the output emission area to the total source emission area should lie in the range 0.0001 to 0.1; and second, the ratio of the SEP to the height of the cavity (H) should be in the range 3 to 10, where the SEP is an average plan view source separation, a special measure of the average spacing of light sources in the plane of the unit. There is also a discussion on the required number of light sources N, their arrangement near the periphery of the cavity, as well as the shape and size of the output emission area. A required minimum brightness uniformity (VESA) value to be maintained, when a subset of Madjacent sources is switched off (where M is at least 0.1 N or M>2 or both), is also disclosed. The backlight can be used for a display or for general lighting purposes.
摘要:
A hollow light-recycling backlight has a “semi-specular” component providing a balance of specularly and diffusely reflected light improving the uniformity of the light output. The component may be arranged on the reflectors (1021), (1014) or inside the cavity (1016). This balance is achieved by designing the component's “transport ratio” defined by (F−B)/(F+B), (F and B are the amounts of incident light scattered forwards and backwards respectively by the component in the plane of the cavity) to lie in a certain range. Furthermore, the product of the front and back reflector “hemispherical” reflectivities should also lie in a given range. Alternatively, the “cavity transport value”, a measure of how well the cavity can spread injected light from the injection point to distant points in the cavity should lie in a further range and the “hemispherical” reflectivity of the back reflector should be >0.7.
摘要:
Multilayer polymeric films and other optical bodies are provided which is useful in making colored mirrors and polarizers. The films are characterized by a change in color as a function of viewing angle.
摘要:
Multilayer polymeric films and other optical bodies are provided which is useful in making colored mirrors and polarizers. The films are characterized by a highly uniform change in color as a function of viewing angle.
摘要:
An edge-lit backlight comprises a front and back reflector forming a hollow light recycling cavity having a cavity depth H and an output region of area Aout, and one or more light sources disposed proximate a periphery of the backlight to emit light into the light recycling cavity. The light sources have an average plan view source separation of SEP collectively having an active emitting area Aemit, wherein a first parameter equals Aemit/Aout and a second parameter equals SEP/H. The first parameter is in a range from 0.0001 to 0.1, and by the second parameter is in a range from 3 to 10. The front reflector has a hemispherical reflectivity for unpolarized visible light of Rfhemi, and the back reflector has a hemispherical reflectivity for unpolarized visible light of Rbhemi, and Rfhemi*Rbhemi is at least 0.70.
摘要:
Multilayer optical films having one or more reflection bands are provided. The films include alternating polymeric layers configured to selectively reflect and transmit visible light at a design angle of incidence, where the selective reflection includes first and second visible reflection bands. At least one of the first and second visible reflection bands is a first-order reflection.