摘要:
Plural trench isolation films are provided with portions of an SOI layer interposed therebetween in a surface of the SOI layer in a resistor region (RR) where a spiral inductor (SI) is to be provided. Resistive element are formed on the trench isolation films, respectively. Each of the trench isolation films includes a central portion which passes through the SOI layer and reaches a buried oxide film to include a full-trench isolation structure, and opposite side portions each of which passes through only a portion of the SOI layer and is located on the SOI layer to include a partial-trench isolation structure. Thus, each of the trench isolation films includes a hybrid-trench isolation structure.
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
In the semiconductor device which has partial trench isolation as isolation between elements formed in an SOI substrate, resistance reduction of the source drain of a transistor and reduction of leakage current are aimed at. A MOS transistor is formed in the active region specified by the isolation insulating layer in the SOI layer formed on the buried oxide film layer (BOX layer). An isolation insulating layer is a partial trench isolation which has not reached a BOX layer, and source and drain regions include the first and the second impurity ion which differs in a mass number mutually.
摘要:
Formed on an insulator (9) are an N− type semiconductor layer (10) having a partial isolator formed on its surface and a P− type semiconductor layer (20) having a partial isolator formed on its surface. Source/drain (11, 12) being P+ type semiconductor layers are provided on the semiconductor layer (10) to form a PMOS transistor (1). Source/drain (21, 22) being N+ type semiconductor layers are provided on the semiconductor layer (20) to form an NMOS transistor (2). A pn junction (J5) formed by the semiconductor layers (10, 20) is provided in a CMOS transistor (100) made up of the transistors (1, 2). The pn junction (J5) is positioned separately from the partial isolators (41, 42), where the crystal defect is thus very small. Therefore, the leakage current is very low at the pn junction (J5).
摘要:
Provided are a thin-film transistor formed by connecting polysilicon layers having different conductivity types with each other which prevents occurrence of inconvenience resulting from diffusion of impurities and a method of fabricating the same. A drain (6), a channel (7) and a source (8) are integrally formed on a surface of a second oxide film (4) by polysilicon. The drain (6) is formed to be connected with a pad layer (3) (second polycrystalline semiconductor layer) through a contact hole (5) which is formed to reach an upper surface of the pad layer (3). The pad layer (3) positioned on a bottom portion of the contact hole (5) (opening) is provided with a boron implantation region BR.
摘要:
In formation of a source/drain region of an NMOS transistor, a gate-directional extension region of an N+ block region in an N+ block resist film located under the gate-directional extension region from implantation of an N-type impurity. A high resistance forming region, which is the well region having a possibility for implantation of an N-type impurity on a longitudinal extension of a gate electrode , can be formed as a high resistance forming region narrower than a conventional high resistance forming region . Thus, a semiconductor device having a partially isolated body fixed SOI structure capable of reducing body resistance and a method of manufacturing the same are obtained.
摘要:
An oxide film is formed on an SOI layer, an isolation oxide film and a gate electrode. A nitride film is formed on the oxide film. Next, anisotropic etching is performed only on the nitride film to form sidewalls on opposite side surfaces of the gate electrode. Thus, the oxide film is not etched. Next, an N-type impurity is implanted through the oxide film to form source/drain regions in an upper portion of the SOI layer. In this step, adjusting the implantation energy so that the impurity reaches the buried oxide film provides the source/drain regions in contact with the buried oxide film.
摘要:
A partial oxide film (31) with well regions formed therebeneath isolates transistor formation regions in an SOI layer (3) from each other. A p-type well region (11) is formed beneath part of the partial oxide film (31) which isolates NMOS transistors from each other, and an n-type well region (12) is formed beneath part of the partial oxide film (31) which isolates PMOS transistors from each other. The p-type well region (11) and the n-type well region (12) are formed in side-by-side relation beneath part of the partial oxide film (31) which provides isolation between the NMOS and PMOS transistors. A body region is in contact with the well region (11) adjacent thereto. An interconnect layer formed on an interlayer insulation film (4) is electrically connected to the body region through a body contact provided in the interlayer insulation film (4). A semiconductor device having an SOI structure reduces a floating-substrate effect.
摘要:
A semiconductor device comprising an SOI substrate fabricated by forming a silicon layer 3 on an insulating layer 2, a plurality of active regions 3 horizontally arranged in the silicon layer 3, and element isolating parts 5 having a trench-like shape which is made of an insulator 5 embedded between the active regions 3 in the silicon layer 3, wherein the insulating layer 2 has spaces 6 positioned in the vicinity of interfaces between the active regions and the element isolating parts 5, whereby it becomes possible to reduce fixed charges or holes existing on a side of the insulating layer in interfaces between the silicon layer and the insulating layer, which fixed charges or holes are generated in a process of oxidation for forming the insulating layer on a bottom surface of the silicon layer.
摘要:
Activation of impurities is achieved without involving creation of a crystal defect or deformation by using phonon absorption. A laser beam (42) having a wavelength in a range of 16 to 17 μm is irradiated onto silicon, to cause phonon absorption. Before an energy supplied from the laser beam (42) diffuses around a portion which is irradiated with the laser beam (42), solid phase epitaxy in the portion finishes. Accordingly, crystallization occurs only in the portion which is irradiated with the laser beam (42), and does not occur in a portion which is not irradiated with the laser beam (42). Hence, heat is not excessively absorbed. Also, local phase change such as melting and solidification is not caused.